

International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com ISSN (Online): 2456-6934

Remarks on 3 -prime near-ring involving * - involution

Moharram A. Khan¹, Aishat O. Aliyu²

¹Department of Mathematics and Computer Science, Umar Musa Yarádua University, Katsina,, Nigeria ² School of Basic and Remedial Studies, Funtua, Katsina state Ahmadu Bello University, Zaria, Nigeria Email: mkhan91@gmail.com¹, aishatumbb@yahoo.com²

Abstract

This work introduces the concept of * - involution in 3 - prime near-ring *N* together with its semi group ideal *S* and it establishes some results on *N* as well as *S* involving *- involution. In addition, examples are given to demonstrate the essentialities of 3- primeness in the hypothesis of our theorems. Finally, we conclude it with some open problems.

© 2017 ijrei.com. All rights reserved

Keywords: Ring, near-ring, 3 -prime near-ring, * - involution, semi group ideal

1. Introduction

By a right near-ring we shall mean a non-empty set N endowed with two associative operations called addition (+) and multiplication (denoted by (+) and (·), respectively) satisfying the following conditions

(i) (N, +) is an additive group (not necessarily abelian)
(ii) (N, ·) is a semi group

(iii) Multiplication(\cdot) distributes over addition(+) from the right (denoted by

 $(x + y) \cdot z = xz + yz \forall x, y, z \in N)$

A right near-ring N is said to be zero symmetric if $x \cdot 0 = 0 \forall x \in N$ (evoking that right distributive gives $0 \cdot x = 0$). Educing that *N* is said to be 3 prime near-ring, will have the property that $aNb = \{0\}$ for $a, b \in N$ implies a = 0 or b = 0. Normal subgroup *S* of (N, +) is said to be an ideal of *N* if SN \subseteq S and $a(b + s) - ab \in S$ for $s \in S$ and $a, b \in N$.

A map *: $N \to N$ is said to be * -involution if for $x, y \in N$, (i) $(x + y)^* = x^* + y^*$, (ii) $(xy)^* = x^*y^*$, (iii) $(x^*)^* = x$.

A near-ring *N* equipped with an * –involution is called a near-ring with * –involution or * – near-ring. We refer the reader to the books of Clay [6], Meldrum [9] and Pilz [11] for the near-ring theory and its applications. Recall that a near-ring N is called 0 –prime if the product of any two of its ideals is non-zero. In addition, a near-ring N is called 3 –prime if for any non-zero $x, y \in N$, $xNy \neq \{0\}$

[7, 12]. Posner published his paper [13] in 1957; various authors have investigated the properties of derivations of prime and semi prime rings. Existence important ring theory tools [4], these outcomes are one of the sources of the developments of such theories as the theory of differential identities [8] and the theory of Hopf algebra action on rings [8], [10]. The study of derivations of nearrings was initiated by Bell and Mason in 1997 [2], but up to now only a few papers on 3-prime near-rings were published.

Bell, Boua, and Oukhtite [4] generalized some results known in this field involving the semi group ideal instead of entire near-rings. From these observations, one can ask a natural question "Can one apply the * –involution on the structure of a 3 – prime near-ring N and its semi group ideal S? The aim of this paper is to give an affirmative answer to this question. In Section 2, we establish that a 3- prime near-ring N with * –involution is an associative ring (or simply a ring). Section 3, devotes the result on semi group ideal of N with * –involution becomes a ring. Also, we construct an example which establishes that our Theorems do not hold even for simple 0-prime near-rings with a right identity element.

2. On 3- prime near-ring with * –involution

In this section, we establish the following result.

Theorem 2.1

Let *N* be a 3- prime near-ring with * –involution. Then *N*

is a ring.

Proof

Assume that * is an involution (* -involution) on N. We claim that N is a ring. We break the proof in two steps.

Step 1

We prove the multiplication on N satisfies left distributive law, that is

$$x(y+z) = xy + xz \qquad \text{for all } x, y, z \in N \qquad (2.1)$$

Using the properties (iii), (ii) and (i) in the definition of * –involution and right distributive law, we have

 $\begin{aligned} x(y+z) &= \left(\left(x(y+z) \right)^* \right)^* = ((y+z)^* x^*)^* \\ &= \left(y^* x^* + z^* x^* \right)^* \\ &= ((xy)^*)^* + ((xz)^*)^* \\ &= xy + xz. \end{aligned}$

This completes the proof of Step 1.

Step 2

We show that addition on N is abelian (viz: (N, +) is abelian)

Replace x by (y + z) and y and z by w in the relation (2.1) to get

(y+z)(w+w) = (y+z)w + (y+z)wfor any $w, y, z \in N$.

(y+z)(w+w) = yw + zw + yw + zwfor any $w, y, z \in N$ (2.2)

(y + z)(w + w) = y(w + w) + z(w + w)for any $w, y, z \in N$.

(y+z)(w+w) = yw + yw + zw + zwfor any $w, y, z \in N$. (2.3)

Combining with the relations (2.2) and (2.3), we find that yw + zw + yw + zw = yw + yw + zw + zwfor any $w, y, z \in N$.

 $zw + yw = yw + zw for any w, y, z \in N.$ ((z + y)-(y + z))w = 0 for all w, y, z \in N.

This implies that $((z + y) - (y + z))N = \{0\}$ for all $y, z \in N$. (2.4) In view of the result of Bell and Mason [2, Lemma 1.2 (i)], and relation (2.4), we have

(z + y) - (y + z) = 0. This implies z + y = y + z for all $y, z \in N$.

Hence, (N, +) is an additive abelian group. From Step 1 and Step 2, we see that a 3-prime near-ring N becomes a ring.

Remark 2.3

The following example shows that the condition of 3prime near-ring in Theorem 2.1 is essential.

Example 2.4

Take a non-commutative near-ring M and define

$$N = \left\{ \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} | \alpha, \beta \in M \right\}, \text{ and a map } *: N \to N$$

by
$$\begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^* = \begin{pmatrix} 0 & 0 & x \\ 0 & 0 & y \\ 0 & 0 & 0 \end{pmatrix} \text{ for all } x, y \in M.$$

Then * is an involution (* -involution) on N, but N is neither a 3- prime near-ring nor a ring. For instance

For * -involution on N

Condition (i)
$$(x + y)^* = x^* + y^*$$
 and (iii) $(x^*)^* = x$,
where $x = \begin{pmatrix} 0 & x_1 & x_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and $y = \begin{pmatrix} 0 & y_1 & y_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, for

all $x_1, x_2, y_1, y_2 \in S$, are straightforward.

(ii)
$$(xy)^* = \begin{bmatrix} \begin{pmatrix} 0 & x_1 & x_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & y_1 & y_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^* = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$y^*x^* = \begin{pmatrix} 0 & 0 & x_1 \\ 0 & 0 & x_2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & y_1 \\ 0 & 0 & y_2 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Implies $(xy)^* = y^* x^*$.

N is not a 3-prime near-ring

We have

$$xNy = \begin{pmatrix} 0 & x_1 & x_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & y_1 & y_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ but } x \neq 0 \text{ and } y \neq 0.$$

From the above observations, one can easily see that N is not a ring.

3. Semi group ideal with * - involution

We begin with the following definition

Definition 3.1

A non- empty subset S of N is called semi group right ideal (resp. semi group

left ideal) of N if $SN \subseteq N$ (resp. $NS \subseteq N$); and S is said to be a semi group ideal if it is both a right semi group ideal as well as a left semi group ideal of N.

Example 3.2

Let $N = \{0, \alpha, \beta, \gamma\}$ with addition and multiplication tables defined as follows.

Taking $U = \{0, \alpha\}$, $V = \{0, \alpha, \beta\}$ and $W = (0, \alpha, \gamma\}$, then *V*, *W* are semi group right ideals of *N* and *U* is a semi group ideal of *N*.

+	0	α	β	γ	•	0	α	β	γ
0	0	α	β	γ	0	0	0	0	0
α	α	0	γ	β	α	0	0	α	α
β	β	γ	0	α	β	0	α	β	β
γ	γ	β	0	α	γ	0	α	γ	γ

Theorem 3.1

Let *N* be a 3- prime near-ring and *S* a semi group ideal. In addition, if *S* admits

* – Involution then *N* is a ring.

In order to prove this theorem, we first state the result, due to Bell [2].

Fact 3.2

Let *S* be a non-zero semi group ideal of a 3-prime nearring *N* with $x \in N$. given $xS = \{0\}$ or $Sx = \{0\}$ then x = 0.

Proof of Theorem 3.1

Keeping in mind the proof of Step 1 for entire 3-prime near-ring N, for the sake of convenience, we prove it for every a, b, c in semi group ideal S of N.

$$a(b+c) = \left(\left(a(b+c) \right)^* \right)^* = ((b+c)^* a^*)^* = (b^* a^* + c^* a^*)^* = (b^* a^*)^* + (c^* a^*)^* = a^{**} b^{**} + a^{**} c^{**}.$$

This implies that

 $a(b+c) = ab + ac \quad \text{for all } a, b, c \in S. \tag{3.1}$

Replacing mb for b and nb for c in (3.1), we get

a(mb+nb) = amb+anb for all $a, b, c \in S$. [a(m+n) - (am+an)]b = 0 for all $a, b, c \in S$ $m, n \in N$. But, for all $b \in S$, also $[a(m+n) - (am+an)]S = \{0\}$ Using Fact 3.2 and (3.2), we find that
(3.2)

 $l(m+n) = lm + ln \ \forall \ l, m, n \in N$

Hence, the multiplication of *N* satisfies left distributive law, (N, +) is an additive abelian group from Step 2 of Theorem 2.1. \blacksquare

Corollary 3.3

Let *N* be a 3-prime near-ring and *S* is a non-zero ideal of *N*. If *S* admits * –involution, then *N* is a ring. Proof of the Corollary 3.3 follows immediately from Theorem 3.1.

Remark 3.4

We construct an example which shows that Theorem 3.1 does not hold even for simple 0-prime near-rings with a right identity element.

Example 3.5

Suppose that *M* be a linear space with a basis $B = \{e_M, e_2, e_3, \dots, e_m\}$ over a field *K* of characteristic $\neq 2$. Define a multiplication $\cdot : M \times M \to M$ by the rule m n = 0 for all $m n \in M$ with $n \notin \{e_M, -e_M\}$ and $m e_M = m, m (-e_M) = -m$. It is easily seen that *M* is a right near-ring. Also *M* is a zero symmetric right near-ring with respect to this multiplication (See [1]).

Next, we show that M is a near-ring with the right identity e_M . Take a non-zero semi group ideal S of M. Let $e_M \in S$. Then $M = Me_M \subseteq S$. This is a contradiction. Thus $e_M \notin S$. If $n \in S$, then either $n + e_M \neq -e_M$ or $n + (-e_M) \neq e_M$. From the first case, it is easily seen that $e_M + n \neq e_M$. Thus $m(e_M + n) = 0$ for all $m \in M$. since S is a semi group ideal, we write $m = m(e_M + n) - m e_M \in S$, for all $m \in M$. This implies that $M \subseteq S$, a contradiction. Hence M is a right near-ring with identity e_M . Trivially, M is not a ring.

4. Open questions

In retrospect, we would like to open the questions for further studies as given below.

Question 1: Can the hypothesis that 3-prime be removed from the assumptions in Theorem 2.1 and Theorem 3.1? *Question 2:* Can the hypothesis that semi group ideal be removed from the assumptions in Theorem 3.1?

Question 3: Can the hypothesis that * –involution be removed from the assumptions in Theorem 2.1 and Theorem 3.1?

References

 K.I. Beidar, Y. Fong, and X. K. Wang (1996), Posner and Herstein Theorems for derivations of 3-prime rings, Comm. Algebra 24: 1581-1589.

- [2] H. E. Bell, On derivations in near-rings II (1997), Kluwer Academic Publishers Netherlands: 191-197.
- [3] H. E. Bell, A. Boua, and L. Oukhtite (2015), Semi group ideals and commutativity in 3-prime near rings, Comm. Algebra 43:1757–1770.
- [4] M. Bresar (1993), Commuting traces of biadditive mappings, commutativity preserving Mappings and Lie mappings, Trans, Amer. Math. Soc. 335: 525-546.
- [5] M. Bresar, J. Vukman (1989), On some additive mappings in rings with involution, Aequat. Math. 38: 178-185.
- [6] J. R. Clay (1992), Near-rings: Geneses and Applications, Oxford Univ. Press, Oxford.
- [7] N. J. Groenewald (1991), Different prime ideals in near rings, Comm. Algebra 19:2667–2675.
- [8] V. K. Kharchenko (1991), Automorphisms and Derivations of Associative rings, Kluwer Academic Publishers, Dordrecht-Boston-London.
- [9] J. D. P. Meldrum (1985), Near-rings and their links with groups, Pitman Marshfield MA.
- [10] S. Montgomery (1993), Hopf Algebras and their Actions on Rings, CBMS Regional Conf., Series in Math, 82, Amer. Math. Soc., Providence.
- [11] G. Pilz, (1983), Near-rings, 2nd Edition, 23, North Holland/American Elsevier, Amsterdam.
- [12] S. Veldsman (1992), On equiprime near rings, Comm. Algebra 20:2569–2587.
- [13] E. C. Posber (1957), Derivations in prime rings, Proc. Amer. Math. Soc.8:1093-1100.