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1. Introduction 
 

In daily life, the deteriorating of goods is a common 

phenomenon. Most edible matters undergo straight exhaustion 

during simple storing. Extremely volatile liquids such as motor 

spirit, ethanol etc. undergoes substantial reduction in a time 

frame through the course of evaporation. Matters concern to 

the domain of electronic, nuclear, photoelectric, etc. weakens 

concern to potentiality and service with regard to time. As a 

matter of fact, deterioration is the degradation of value.   The 

inventory models for deteriorating items have been thoroughly 

investigated by Covent and Philip [2] formulated an EOQ 

model in which the rate of deterioration of inventory models 

two-parameter Weibull distribution, demand rate is a constant 

and without shortage of inventory. While formulating 

inventory models, the factor such as demand and deterioration 

rate cannot be ignored. Kang & Kim [8] studied the price of 

the deteriorating inventory, since it is most important factor of 

demand as well as production level at the firm decided the 

basis price. Covert and Philip [2] moved over Ghare and 

Schrader’s invariable declination rate to a two-attribute 

Weibull distribution. Afterward, Shah and Jaiswal [19] 

expressed and re-confirmed an order level inventory frame 

with a steady rate of deterioration respectively.  

Lot of flourishing information currently derived by Sana and 

Chaudhuri [18] attempted the model analytically with power 

order deterioration but they made no attempt to solve the model 

numerically because of mathematical complexity of the model 

Lot of flourishing information currently derived by Chung and 

Ting [1], Covert and Philip [2]. Sahoo et. al. [17] have also 

established an EOQ model with two parameter constant 

deterioration and price dependent demand. Later, Sachan [13] 

elaborated the model on deficits. Hollier and Mak [12], Hariga 

and Benkherouf [10], Wee [5, 6] have also established their 

Abstract  

 
This paper develops an inventory model for deteriorating items with uniform 

replenishment rate with Weibull demand and without shortages. The deterioration rate is 

a cubic polynomial as a function of time. The objective of this study is to minimize the 

total cost in which the shortages are not allowed. A numerical example is presented to 

illustrate the model and the sensitivity analysis of the optimal solution with respect to 

various parameters is also studied. The total optimal average variable inventory cost as 

an important performance of the model.          ©2021 ijrei.com. All rights reserved 

Article Information 

 

Received: 6 June 2021 

Revised:  01 July 2021 

Accepted: 12 July 2021 

Available online: 15 July 2021 

__________________________ 

 

Keywords:  

 

Weibull demand; 

Cubic deterioration; 

Shortages, Deteriorating items 

 

 

International Journal of Research in Engineering and Innovation  

(IJREI) 
journal home page: http://www.ijrei.com 

 

ISSN (Online): 2456-6934 

 

ORIGINAL ARTICLE 

 

mailto:sahoock2012@gmail.com
https://doi.org/10.36037/IJREI.2021.5510
https://ijrei.com/table.php?volume=volume-5&&issue=issue-5
http://www.ijrei.com/


  

C. K. Sahoo/ International journal of research in engineering and innovation (IJREI), vol 5, issue 5 (2021), 285-290 

 

  

 

 

286  

pattern considering the exponential order. Earlier, Goyal and 

Giri [14], have put forwarded an exceptional study on the 

current drift in framing declination storage of the goods like 

vegetables, fruits, etc. whose declination rate gets augmented 

with time. Ghare and Schrader [11] have primarily exercised 

the model of deterioration chased by Covert and Philip [2] who 

devised a model with inconsistent rate of declination with two-

factor Weibull distributions, which has further been 

comprehended by Philip [3] considering an inconsistent 

declination rate of three-factor Weibull distributions. Seldom 

in some storage units, the higher the waiting time is, the lesser 

the retreat rate would be and vice-versa. Consequently, all 

through the deficiency phase, the retreat rate is inconsistent and 

reliant on the waiting time for the subsequent refilling. Chang 

and Dye [4] has established an EOQ form accepting deficit. 

Newly, Ouyang, Wu and Cheng [9] have devised an EOQ 

stock account for declination matters in which order utility is 

exponentially declining and moderately retreat. Dye [4] 

proposed an EOQ model for perishable Items with Weibull 

distributed deterioration. He assumed that the demand rate is a 

power-form function of time. Sana and Chaudhuri [18] 

developed a stock-review inventory model for perishable items 

with uniform replenishment rate and stock-dependent demand. 

The deterioration function per unit time is a quadratic function 

of time. Mishra and Singh [7] developed an EOQ Model with 

Power-Form Stock-Dependent Demand and Cubic 

Deterioration. In the recent paper, Sahoo, Paul & kumar [15] 

have emphasized upon inventory model possessing two 

warehouses inventory model has been developed with 

exponentially diminishing order rate with limited suspension 

price including salvages. In another paper Sahoo, Paul & 

kalam[16] established An EOQ structure for declining matter 

with cubic order and inconsistent declining rate. Deficit has 

been accepted and moderately retreated. The Principal 

significance of the model is to establish an optimal frame. 

In this model for cubic deteriorating items is developed in 

which demand rate is weibull function and without shortages. 

The total article has been organized in various important 

sections which include introduction fundamental assumption 

and notations, Mathematical model, Numerical analysis, 

sensitivity analysis and conclusion. 

 

2. Assumptions and Notation 

 

The following assumption and notations have been 

considered in this inventory model. 

 

2.1 Assumptions 

 

The following hypotheses are prepared to initiate the 

representation.   

 The demand  function D(I) is taken to be a Weibull 

function of inventory level I(t) at any time t as 

𝐷(𝐼) = 𝛼𝛽𝑡𝛽−1, 𝛼 > 0, 𝛽 > 1. 
 The replenishment occurs instantaneously at an 

infinite but replenishment size is finite. 

 Lead time is zero. 

 The deteriorating rate, 𝜃(𝑡) is a cubic function of time. 

Here 𝜃(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 + 𝑑𝑡3 ,where a,b, c and d 

are real numbers, d≠ 0 

Where a = initial deterioration 

b = initial rate of change of deterioration. 

c= acceleration of deterioration  

d=rate of change of acceleration of deterioration. 

The items undergo decay at 𝜃(𝑡). 𝐼(𝑡) at any time 𝑡. 
 Shortages are not allowed. 

 The time-horizon is infinite. 

 Holding cost and set-up cost per inventory cycle both 

are constant. 

 Procurement cost per unit item is constant. 

 

2.2 Notations 

 

The subsequent data have been admitted in establishing the 

representation. 

 𝐼(𝑡) =The inventory level at time  𝑡 . 
 𝐼1 =Intial and Terminal inventory level. 

 𝐼2 =Pick of the inventory level. 

 𝑅 =Finite replenishment rate. 

 𝐶𝑠 =Set up cost per cycle. 

 𝐶ℎ =Holding cost per unit per unit time. 

 𝐶𝑝 = Procurement cost per unit time. 

 𝑡1 =Pick off time per inventory level. 

 𝑇 & 𝑇𝐴𝐶 =The length of a cycle and Total average 

cost respectively. 

 

3. Mathematical Formulation 

 

In this model the inventory cycle time consist of two segments 

i.e. [0, t1] and [t1, T]. Uniform replenishment rate starts with 

inventory t1 and continue up to time t=t1. The inventory piles 

up during [0, t1], after meeting demands in the market.  

 

 
Figure 1: Graphical presentation of inventory system   

 

The inventory level at t=t1 is I2. The storage space is limited. It 

can store maximum (Imax) units. Again the inventory level 

gradually reaches to I1 at time t=T. The instantaneous states of 

the inventory level I (t) at any time ‘t’ are governed by the 
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following system of differential equations. The inventory level 

at different instants of time is shown in fig.1 

 

𝜃(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 + 𝑑𝑡3, 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑐 , 𝑑 ∈ 𝑅 𝑎𝑛𝑑 𝑑 ≠ 0 

𝜃′(𝑡) = 𝑏 + 2𝑐𝑡 + 3𝑑𝑡2 

𝜃"(𝑡) = 2𝑐 + 6𝑑𝑡 

𝜃′′′(𝑡) = 6𝑑 

 

Where,  

 

a= initial deterioration 

b = initial rate of change of deterioration 

c = acceleration of deterioration 

d = Rate of change of acceleration of the deterioration. 

 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝑅−∝ 𝛽𝑡𝛽−1 − 𝜃(𝑡). 𝐼(𝑡), 0 ≤ 𝑡 ≪ 𝑡1  (1) 

 

𝑤𝑖𝑡ℎ 𝐼(0) = 𝐼1 𝑎𝑛𝑑 𝐼(𝑡1) = 𝐼2 

 
 𝑑𝐼(𝑡)

𝑑𝑡
= −∝ 𝛽𝑡𝛽−1 − 𝜃(𝑡). 𝐼(𝑡), 𝑡1 ≤ 𝑡 ≪ 𝑇  (2) 

 

with   𝐼(𝑇) = 𝐼1  

 

We prefer to work I (t) = I  
 

𝜃(𝑡) = 𝜃 

𝜃′(𝑡) = 𝜃′  

𝜃"(𝑡) = 𝜃" 

𝜃′′′(𝑡) = 𝜃′′′ 
 

Solving the above equations using Taylor’s series expansion 

Now equation (1) reduces to the following equations. 

 
𝑑𝐼

𝑑𝑡
= 𝑅−∝ 𝛽𝑡𝛽−1 − 𝜃. 𝐼 

 
𝑑2𝐼

𝑑𝑡2
=−𝛼𝛽(𝛽 − 1)𝑡𝛽−2+∝ 𝛽𝜃𝑡𝛽−1 − (𝜃′ − 𝜃2)𝐼 − 𝜃𝑅 

 
𝑑3𝐼

𝑑𝑡3
=−𝛼𝛽(𝛽 − 1)(𝛽 − 2)𝑡𝛽−3+∝ 𝛽(𝛽 − 1)𝜃𝑡𝛽−2+∝

𝛽𝜃2𝑡𝛽−1 − (𝜃" − 𝜃𝜃′ − 𝜃3)𝐼 − 𝜃2𝑅 

 
𝑑4𝐼

𝑑𝑡4
= −𝛼𝛽(𝛽 − 1)(𝛽 − 2)(𝛽 − 3)𝑡

𝛽−4
+ 𝛼𝛽(𝛽 − 1)(𝛽 −

2)𝜃𝑡𝛽−3 +𝛼𝛽(𝛽 − 1)(𝜃′+𝜃2)𝑡𝛽−2 + 𝛼 𝛽(𝜃𝜃′ +  𝜃" −
𝜃3)𝑡𝛽−1  + (𝜃𝜃′ + 2𝜃𝜃′′ + 2𝜃2𝜃′ − 𝜃′′′ − 𝜃4)𝐼 −

(𝜃" + 𝜃𝜃′ − 𝜃3)𝑅  

 

Applying initial condition at t=0, I (0) =𝐼1 , 𝜃(0) =
𝑎, 𝜃′(0) = 𝑏 , 𝜃"(0) = 2𝑐, 𝜃′′′(0) = 6𝑑 
𝑑𝐼

𝑑𝑡
]
𝑡=0

= 𝑅 − 𝑎𝐼1 = 𝑓
1
(𝐼1) 

𝑑2𝐼

𝑑𝑡2
 ]
𝑡=0

=−(𝑏 − 𝑎2)𝐼1 − 𝑎𝑅 = 𝑓2(𝐼1) 

 
𝑑3𝐼

𝑑𝑡3
 ]
𝑡=0

=−(2𝑐 − 𝑎𝑏 − 𝑎3)𝐼1 − 𝑎
2𝑅 = 𝑓3(𝐼1) 

 
𝑑4𝐼

𝑑𝑡4
]
𝑡=0

= (𝑎𝑏 + 4𝑎𝑐 + 2𝑎2𝑏 − 6𝑑 − 𝑎4)𝐼1 − (2𝑐 + 𝑎𝑏 −

𝑎3)𝑅 = 𝑓
4
(𝐼1)  

 

I (t) =I (0) + [
𝑑𝐼

𝑑𝑡
]
𝑡=0
. 𝑡 + [

𝑑2𝐼

𝑑𝑡2
]
𝑡=0
.
𝑡2

2
+ +[

𝑑3𝐼

𝑑𝑡3
]
𝑡=0
.
𝑡3

6
+

+ [
𝑑4𝐼

𝑑𝑡4
]
𝑡=0
.
𝑡4

24
 = 𝐼1 + 𝑡𝑓1(𝐼1) +

𝑡2

2
𝑓2(𝐼1) +

𝑡3

6
𝑓3(𝐼1) +

𝑡4

24
𝑓4(𝐼1)  

, 0≤ 𝑡 ≤ 𝑡1     (3) 

 

Again from equation (2), we get 

 
𝑑𝐼(𝑡)

𝑑𝑡
= −∝ 𝛽𝑡𝛽−1 − 𝜃(𝑡). 𝐼(𝑡)   

 

This can be written as 

 
𝑑𝐼

𝑑𝑡
= −∝ 𝛽𝑡𝛽−1 − 𝜃. 𝐼 

 
𝑑2𝐼

𝑑𝑡2
=−𝛼𝛽(𝛽 − 1)𝑡𝛽−2+∝ 𝛽𝜃𝑡𝛽−1 − (𝜃′ − 𝜃2)𝐼 

 
𝑑3𝐼

𝑑𝑡3
=−𝛼𝛽(𝛽 − 1)(𝛽 − 2)𝑡𝛽−3+∝ 𝛽(𝛽 − 1)𝜃𝑡𝛽−2+∝

𝛽(2𝜃′ − 𝜃2)𝑡𝛽−1 + (3𝜃𝜃′ − 𝜃" − 𝜃3)𝐼 

 
𝑑4𝐼

𝑑𝑡4
= −𝛼𝛽(𝛽 − 1)(𝛽 − 2)(𝛽 − 3)𝑡

𝛽−4
+ 

∝ 𝛽(𝛽 − 1)(𝛽 − 2)𝜃𝑡𝛽−3   +∝ 𝛽(𝛽 − 1)(3𝜃′ − 𝜃2)𝑡𝛽−2+

∝ 𝛽(3𝜃" − 5𝜃𝜃′ + 𝜃3)𝑡𝛽−1 + (3𝜃′
2

+ 4𝜃𝜃" − 𝜃′′′ − 6𝜃2𝜃′ + 𝜃4)𝐼 
At 𝑡 = 𝑡1 

𝐼(𝑡1) = 𝐼2    
       𝜃(𝑡1) = 𝑎 + 𝑏𝑡1 + 𝑐𝑡1

2 + 𝑑𝑡1
3           

       𝜃′(𝑡1) = 𝑏 + 2𝑐𝑡1 + 3𝑑𝑡1
2 

       𝜃"(𝑡1) = 2𝑐 + 6𝑑𝑡1 

       𝜃′′′(𝑡1) = 6𝑑 

 
𝑑𝐼

𝑑𝑡
]
𝑡=𝑡1

= −∝ 𝛽𝑡1
𝛽−1 − (𝑎 + 𝑏𝑡1 + 𝑐𝑡1

2 + 𝑑𝑡1
3)𝐼2

=  𝑓
1
(𝐼2) 

 
𝑑2𝐼

𝑑𝑡2
 ]
𝑡=𝑡1

=−𝛼𝛽(𝛽 − 1)𝑡1
𝛽−2 + 𝛼𝛽(𝑎 + 𝑏𝑡1 + 𝑐𝑡1

2 +

𝑑𝑡1
3)𝑡1

𝛽−1 − [(𝑏 − 𝑎2) + (2𝑐 − 2𝑎𝑏)𝑡1  + (3𝑑 − 2𝑎𝑐 −
𝑏2)𝑡1

2 − (2𝑏𝑐 + 2𝑎𝑑)𝑡1
3 − (2𝑏𝑑 + 𝑐2)  𝑡1

4 −
2𝑐𝑑𝑡1

5−𝑑2𝑡1
6]𝐼2  =   𝑓2(𝐼2) 
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𝑑3𝐼

𝑑𝑡3
 ]
𝑡=𝑡1

= −𝛼𝛽(𝛽 − 1)(𝛽 − 2)𝑡1
𝛽−3+∝ 𝛽(𝛽 − 1)(𝑎 + 𝑏𝑡1 + 𝑐𝑡1

2 + 𝑑𝑡1
3)𝑡1

𝛽−2 + 

∝ 𝛽 {

(2𝑏 − 𝑎2) + (4𝑐 − 2𝑎𝑏)𝑡1
+(6𝑑 − 2𝑎𝑐 − 𝑏2)𝑡1

2 − (2𝑏𝑐 + 2𝑎𝑑)𝑡1
3

−(2𝑏𝑑 + 𝑐2)𝑡1
4 − 2𝑐𝑑𝑡1

5 − 𝑑2𝑡1
6

} 𝑡1
𝛽−1 

+

[
 
 
 
 
(3𝑎𝑏 − 𝑎3 − 2𝑐) + (6𝑎𝑐 − 3𝑎2𝑏 + 3𝑏2 − 6𝑑)𝑡1 + (9𝑎𝑑 − 3𝑎

2𝑐 − 3𝑎𝑏2 + 9𝑏𝑐)𝑡1
2

+(−6𝑎𝑏𝑐 − 3𝑎2𝑑 + 6𝑏𝑑 + 𝑏2𝑐 − 𝑏3)𝑡1
3 + (−6𝑎𝑏𝑑 − 3𝑎𝑐2 − 3𝑏2𝑐 + 15𝑐𝑑)𝑡1

4

+(−6𝑎𝑐𝑑 − 3𝑏2𝑑 − 3𝑏𝑐2 + 9𝑑2)𝑡1
5 + (−6𝑏𝑐𝑑 − 3𝑎𝑑2 − 𝑐3)𝑡1

6

+(−3𝑏𝑑2 − 3𝑐2𝑑)𝑡1
7 − 3c𝑑2𝑡1

8 − 𝑑3𝑡1
9] 𝐼2 ]

 
 
 
 

= 𝑓
3
(𝐼2) 

 

𝑑4𝐼

𝑑𝑡4
]
𝑡=𝑡1

= −𝛼𝛽(𝛽 − 1)(𝛽 − 2)(𝛽 − 3)𝑡1
𝛽−4 + 𝛼 𝛽(𝛽 − 1)(𝛽 − 2)(𝑎 + 𝑏𝑡1 + 𝑐𝑡1

2 + 𝑑𝑡1
3)𝑡1

𝛽−3  

   +∝ 𝛽(𝛽 − 1) [
(3𝑏 − 𝑎2) + (6𝑐 − 2𝑎𝑏)𝑡1 + (9𝑑 − 2𝑎𝑐 − 𝑏

2)𝑡1
2

+(−2𝑏𝑐 − 2𝑎𝑑)𝑡1
3 + (−2𝑏𝑑 − 𝑐2)𝑡1

4 − 2𝑐𝑑𝑡1
5 − 𝑑2𝑡1

6] 𝑡1
𝛽−2 

+𝛼𝛽

[
 
 
 
 

(6𝑐 − 5𝑎𝑏 + 𝑎3) + (18𝑑 − 10𝑎𝑐 − 5𝑏2 + 3𝑎2𝑏)𝑡1
+ (−15𝑎𝑑 − 15𝑏𝑐 + 3𝑎2𝑐 + 3𝑎𝑏2)𝑡1

2 + (−20𝑏𝑑 − 10𝑐2 + 6𝑎𝑏𝑐 + 3𝑎2𝑑 + 𝑏3)𝑡1
3

+(−25𝑐𝑑 + 6𝑎𝑏𝑑 + 3𝑎𝑐2 + 3𝑏2𝑐)𝑡1
4 + (−15𝑑2 + 6𝑎𝑐𝑑 + 3𝑏2𝑑 + 3𝑏𝑐2)𝑡1

5

+(6𝑏𝑐𝑑 + 3𝑎𝑑2 + 𝑐3)𝑡1
6 + (3𝑏𝑑2 + 3𝑐2𝑑)𝑡1

7 + 3𝑐𝑑2 𝑡1
8 + 𝑑3𝑡1

9 ]
 
 
 
 

𝑡1
𝛽−1 

+

[
 
 
 
 
 
 
 
 
 
(3𝑏2 + 8𝑎𝑐 − 6𝑑 − 6𝑎2𝑏 + 𝑎4) + (20𝑏𝑐 + 24𝑎𝑑 − 12𝑎𝑏2 − 12𝑎2𝑐 + 4𝑎3𝑏)𝑡1

+(42𝑏𝑑 + 20𝑐2 − 36𝑎𝑏𝑐 − 18𝑎2𝑑 − 6𝑏3 + 4𝑎3𝑐 + 6𝑎2𝑏2)𝑡1
2

+(68𝑐𝑑 − 48𝑎𝑏𝑑 − 24𝑏2𝑐 − 24𝑎𝑐2 + 12𝑎2𝑏𝑐 + 4𝑎3𝑑 + 4𝑎𝑏3)𝑡1
3

+(51𝑑2 − 60𝑎𝑐𝑑 − 30𝑏2𝑑 − 30𝑏𝑐2 + 12𝑎2𝑏𝑑 + 12𝑎𝑏2𝑐 + 6𝑎2𝑐2 + 𝑏3)𝑡1
4

+(−72𝑏𝑐𝑑 − 36𝑎𝑑2 − 12𝑐3 + 12𝑎2𝑐𝑑 + 12𝑎𝑏2𝑑 + 12𝑎𝑏𝑐2 + 4𝑏3𝑐)𝑡1
5

+(−42𝑏𝑑2 − 42𝑐2𝑑 + 24𝑎𝑏𝑐𝑑 + 6𝑎2𝑑2 + 4𝑎𝑐3 + 6𝑏2𝑐2 + 4𝑏3𝑑)𝑡1
6

+(−48𝑐𝑑2 + 12𝑎𝑏𝑑2 + 12𝑎𝑐2𝑑 + 12𝑏2𝑐𝑑 + 4𝑏𝑐3)𝑡1
7

+(−18𝑑3 + 12𝑎𝑐𝑑2 + 12𝑏𝑐2𝑑 + 6𝑏2𝑑2 + 𝑐4)𝑡1
8

+(12𝑏𝑐𝑑2 + 4𝑎𝑑3 + 4𝑐3𝑑)𝑡1
9 + (4𝑏𝑑3 + 6𝑐2𝑑2)𝑡1

10 + 4𝑐𝑑3𝑡1
11 + 𝑑4𝑡1

12 ]
 
 
 
 
 
 
 
 
 

𝐼2 = 𝑓4(𝐼2)  

 

 

 

The total Inventory in the cycle 

 

∫ 𝐼(𝑡)𝑑𝑡 = ∫ 𝐼(𝑡)𝑑𝑡 + ∫ 𝐼(𝑡)𝑑𝑡
𝑇

𝑡1

𝑡1

0

𝑇

0
=𝐼1𝑡1+ 𝑓1(𝐼1)

𝑡1
2

2
+ 𝑓2(𝐼1)

𝑡1
3

6
𝑓3(𝐼1)

𝑡1
4

24
+𝑓

4
(𝐼1)

𝑡1
5

120
+ 𝐼2(T-𝑡1) + 𝑓1(𝐼2)

(T−𝑡1)
2

2
+ 𝑓2(𝐼2)

(T−𝑡1)
3

6
+

𝑓3(𝐼2)
(T−𝑡1)

4

24
+𝑓

4
(𝐼2)

(T−𝑡1)
5

120
 

 

Total invested during each inventory cycle is given by 

 

TC (T) = 𝐶ℎ{∫ I(t)dt + ∫ I(t)dt} +  Cs
T

𝑡1

𝑡1

0
+ 𝐶𝑝R𝑡1 

= 𝐶ℎ

{
 

 𝐼1𝑡1 + 𝑓1(𝐼1)
𝑡1
2

2
+ 𝑓

2
(𝐼1)

𝑡1
3

6
𝑓
3
(𝐼1)

𝑡1
4

24
+ 𝑓

4
(𝐼1)

𝑡1
5

120

+𝐼2(T − 𝑡1) +  𝑓1(𝐼2)
(T − 𝑡1)

2

2
+ 𝑓

2
(𝐼2)

(T − 𝑡1)
3

6
+ 𝑓

3
(𝐼2)

(T − 𝑡1)
4

24
+ 𝑓

4
(𝐼2)

(T − 𝑡1)
5

120 }
 

 

 

                               + Cs + CpR 𝑡1. 
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Therefore, the total average cost is 

 

TAC (T) = 
1

𝑇
[𝐶ℎ{∫ I(t)dt + ∫ I(t)dt} +  Cs

T

𝑡1

𝑡1
0

+

𝐶𝑝R𝑡1]=
1

𝑇

[
 
 
 
 
𝐶ℎ {

𝐼1𝑡1 + 𝑓1(𝐼1)
𝑡1
2

2
+ 𝑓

2
(𝐼1)

𝑡1
3

6
𝑓
3
(𝐼1)

𝑡1
4

24
+ 𝑓

4
(𝐼1)

𝑡1
5

120

+𝐼2(T − 𝑡1) + 𝑓1(𝐼2)
(T−𝑡1)

2

2
+ 𝑓

2
(𝐼2)

(T−𝑡1)
3

6
+ 𝑓

3
(𝐼2)

(T−𝑡1)
4

24
+ 𝑓

4
(𝐼2)

(T−𝑡1)
5

120

}

+ Cs + CpR 𝑡1 ]
 
 
 
 

 

 

Now we optimize TAC (T), for 𝐼1 ≥ 0, 𝑅 > ∝ 𝛽𝑡𝛽−1a𝐼1 , 𝐼2 

>𝐼1 and 𝐼2 ≤ 𝐼1 

 

The optimal value of T for the minimum total average cost is 

the solution of the nonlinear equation in T 

 

i.e.  
𝑑

𝑑𝑡
(𝑇𝐴𝐶) = 0  provided that this obtained value of T 

satisfies the condition 

 

[
𝑑2

𝑑𝑡2
(𝑇𝐴𝐶)]

𝑡 =𝑇
>  0 

 

When 𝑇∗ is the optimal value of T. 

 

The above constrained optimization problem can be solved 

using any iterative method, when the values of the parameters 

are prescribed. Hence this objective is fulfilled using 

MATHEMATICA 12.0 which returns us optimal value of T 

and Total optimal average cost (TAC) of the system. 

 

4. Numerical Illustration 

 

Example 1 

 

In this section, we provide a numerical example to illustrate the 

above theory. Considering an inventory system with following 

parameter value in proper units and the output of the Numerical 

example implemented by MATHEMATICA 12.0. 𝛼 = 2, 𝛽 =
2, 𝑎 = 0.08, 𝑏 = 0.06, 𝑐 = 0.04, 𝑑 = 0.02, 𝐼1 = 1500, 𝐼2 =
2000, 𝐶𝑠 = 2500, 𝐶ℎ = 7, 𝐶𝑝 = 2, , 𝑡1 = 2, 𝑅 = 300.The total 

average cost TAC*=15.2531 and the optimal value of 

T*=0.9234. 

 
Table 1: Effect of change in various parameters of example 1 

Changing 

parameter 

% change in the 

parameter 
T*  TAC* 

% change 

in TAC* 

Ch 

50 0.87532 15.5621 2.026 

25 0.97321 14.2395 -6.645 

10 0.98342 12.5345 -17.823 

-10 0.99324 12.1543 -20.316 

-25 1.45462 11.9364 -21.745 

-50 2.32152 10.2135 -33.040 

Cs 

50 0.91783 21.7314 42.472 

25 0.93252 20.5075 34.448 

10 0.95276 17.4632 14.490 

-10 0.97673 14.7645 -3.203 

-25 0.98351 12.4164 -18.598 

-50 1.28427 10.3172 -32.360 

Cp 

50 0.87306 15.2544 0.009 

25 0.95732 15.3615 0.711 

10 0.98453 15.5437 1.905 

-10 0.99564 15.6528 2.620 

-25 1.32164 15.8774 4.093 

-50 2.52316 16.3543 7.220 

I1 

50 0.95995 23.8113 56.108 

25 0.97132 19.3272 26.710 

10 0.98342 14.2112 -6.831 

-10 0.99352 9.11545 -40.239 

-25 0.99602 7.35461 -51.783 

-50 1.56743 5.37869 -64.737 

I2 

50 1.32529 11.7554 -22.931 

25 0.99315 13.1624 -13.707 

10 0.95347 15.4657 1.394 

-10 0.91645 17.3659 13.852 

-25 0.87216 20.9985 37.667 

-50 0.83129 27.6683 81.395 

R 

50 0.9775 18.3484 20.293 

25 0.9874 18.4125 20.713 

10 0.99435 18.8595 23.644 

-10 1.00763 19.2883 26.455 

-25 1.10721 21.4986 40.946 

-50 1.24327 24.2534 59.007 

                      
t1 

50 0.8573 15.5504 1.949 

25 0.83912 15.5636 2.036 

10 0.82146 15.5832 2.164 

-10 0.81124 15.8313 3.791 

-25 0.80243 15.8946 4.206 

-50 0.78287 15.9647   

 

 

5. Sensitivity Analysis 

 

We now study the effect of changes of values of the parameters 

𝑎, 𝑏, 𝑐, 𝑑, 𝛼, 𝛽, , 𝑡1, 𝐶ℎ , 𝐶𝑠, 𝐶𝑝, 𝑅, 𝐼1, 𝐼2 on the optimal total cost. 

The Sensitivity analysis is performed by changing each of 

parameters by +50%, +25%, +10%, -10%, -25%, -50% taking 

one parameter at a time and keeping the remaining parameters 

unchanged. 

The investigation has been based upon the previous numerical 

demonstration and the consequences have appeared in table 1. 

The comment underneath has to be experienced. 

 T* increases while TAC* decreases with the decrease in 

the value of the parameter 𝐶ℎ. The obtained result shows 

that T* is moderately sensitive to change in Ch    and TAC* 

is highly sensitive to change in Ch. 
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 T* increases while TAC* decreases with the decrease in 

the value of the parameter Cs . The obtained result shows 

that T* is low sensitive to change in Ch and TAC* is highly 

sensitive to change in Ch. 

 T* increases while TAC* increases with the decrease in 

the value of the parameter Cp. The obtained result shows 

that T* is low sensitive to change in Cp and TAC* is 

moderately sensitive to change in Cp.   

 T* increases while TAC* decreases with the decrease in 

the value of the parameter I1.   The obtained result shows 

that T* is low sensitive to change in I1 and TAC* is highly 

sensitive to change in I1. 

 T* decreases while TAC* increases with the decrease in 

the value of the parameter I2. The obtained result shows 

that T* is low sensitive to change in I2 and TAC* is highly 

sensitive to change in I2. 
 T* increases while TAC* increases with the decrease in 

the value of the parameter R. The obtained result shows 

that T* is low sensitive to change in R and TAC* is highly 

sensitive to change in R. 

 T* decreases while TAC* increases with the decrease in 

the value of the parameter t1. The obtained result shows 

that T* & TAC* are moderately sensitivity to change in t1. 

 

6. Conclusions 

 

In this study, we have developed an inventory model for the 

cubic deterioration rate for the items like fruits, vegetables, 

milk, sweets and radioactive substances. Retailer in super 

market faces this difficulty during trading products whose 

importance goes down with each passing moment.  The 

demand rate is assumed Weibull function of time. The pattern 

in which the basic independent factors influencing the total 

average cost has also been projected through sensitivity 

analysis column within this model. This very model can be 

highly appreciable for the industries in which the demand rate 

depends upon the time. The objective of our study is to 

determine the total optimal average variable inventory cost at 

optimal inventory level which is total sum of the set-up cost, 

carrying cost and procurement costs of inventory items. 
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