

International Journal of Research in Engineering and Innovation

(IJREI)

journal home page: http://www.ijrei.com

ISSN (Online): 2456-6934

ORIGINAL ARTICLE

Exergy analysis of simple & cascade vapour compression refrigeration systems using HFO+HFC blends low temperature applications

R. S. Mishra

Department of Mechanical Engineering, Delhi Technological University Delhi, India

Article Information

Received: 21 October 2021 Revised: 01 December 2021 Accepted: 09 December 2021 Available online: 19 December 2021

Keywords:

Vapour compression refrigeration systems Energy-Exergy Analysis ascade Refrigeration Systems Thermodynamic Performances HFO+HFC blends

Abstract

Numerical computation was carried out for finding performance parameters using HFO+HFC blends as alternative refrigerants in the vapour compression refrigeration systems at evaporator temperature of -30° and condenser temperature of 50°C at 80% of compressor efficiency and it was found that the first law efficiency (COP) of vapour compression refrigeration systems using eight HFC and HFO blends at dead state temperature of 313K(40°C) the R515A gives highest first law efficiency , exergetic efficiency with lowest exergy destruction ratio. To improve thermodynamic performance (COPs, work done by compressors, exergy destruction ratio, mass flow rates, heat rejected by condensers, the cascade refrigeration systems have been suggested using HFO+HFC blends to achieve temperature up to -70°C to -90°C for the applications (i.e. in the cold storage and stores and in blood banks). The cascade refrigeration systems are the combination of two refrigeration cycle using HFO+HFC blends having low GWP and negligible ODP, harmless to environment, and do not violate the Kyoto protocol, the first law efficiency (COP) of cascade vapour compression refrigeration systems using R454B in high temperature cycle and R513A in low temperature cycle gives higher first law efficiency, exergetic efficiency with lowest exergy destruction ratio.

©2021 ijrei.com. All rights reserved

1. Introduction

Many industrial applications require low temperature refrigeration such as quick freezing biomedical preservations, manufacturing of dry ice, liquefaction of petroleum vapors, pharmaceutical reactions etc. where evaporating temperature requires between -40°C to- 80°C. Condensing temperature is governed by temperature of cooling tower water which is about 35 °C. Thus, system has to work for wide range of temperature. Single stage vapor compression system is not feasible for such application and its performance decreases below -35 °C.

Cabello,et,al., [1], have analyzed the performance of a vapour compression refrigeration system using three different

Corresponding author: R.S. Mishra Email Address: hod.mechanical.rsm@dtu.ac.in https://doi.org/10.36037/IJREI.2021.5613 working fluids (R134a, R407c & R22). The operating variables are the evaporating pressure, condensing pressure and degree of superheating at the compressor inlet and analyzed that the power consumption decreases when compression ratio increases with R22 than using the other working fluids. Multistage or compound systems can be useful but no refrigerants available to work efficiently for high temperature lift. Also, it will be difficult to balance the oil level in compressor because of large difference in suction pressures of low stage and higher stage compressors. Cascade refrigeration system has two different stages which permits appropriate selection refrigerants to maximise system performance. Synthetic refrigerants prominently used in till now due to their excellent thermodynamic properties but owing to higher ODP (Ozone Depletion Potential), GWP (Global worming Potential) they are contributor to ozone depletion and global warming. Cascade refrigeration system is the combination of two single stage vapor compression system together, condenser of LTC and evaporator of HTC is cascaded and forms the heat exchanger where evaporator cascade absorbs the heat from the condenser cascade which further leads to better refrigeration effect. Amongst the natural refrigerants.

B.O. Bolaji et al [2] investigated experimentally the performances of three ozone friendly Hydrofluorocarbon (HFC) refrigerants R12, R152a and R134a. R152a refrigerant found as a drop in replacement for R134a in vapour compression system and discussed the process of selecting environmental-friendly refrigerants that have zero ozone depletion potential and low global warming potential. R23 and R32 from methane derivatives and R152a, R143a, R134a and R125 from ethane derivatives are the emerging refrigerants that are nontoxic, have low flammability and environmental-friendly. These refrigerants need theoretical and experimental analysis to investigate their performance in the system [3] James M. Calm [4], has studied the emission and

James M. Calm [4], has studied the emission and environmental impacts of R11, R123, R134a due to leakage from centrifugal chiller system. He also investigated the total impact(TEWI) and change in system efficiency or performance due to charge loss and summarized the methods to reduce the refrigerant losses by the system like design modifications, improvement in preventive maintenance techniques, use of purge system for refrigerant vapour recovery, servicing and lubricant changing in system

Leonardo Arrieta Mondragon, et.al [5] suggested the use of carbon dioxide (CO₂) and seems to be the most promising one especially as the natural refrigerant. The key advantages of CO₂ include the fact that is not explosive, non-toxic, easily available, environmental friendly and has excellent thermophysical properties. On the other hand, researches in Norway in 1993 showed that the refrigerant leakages coming from the commercial sector were 30% of the annual total. In this research, the use of a cascade system using CO₂ in the low temperature stage and NH₃ in the high temperature stage turned out to be an excellent alternative for cooling applications at very low temperatures

It is well-known that cascade refrigeration system is usually adopted to meet the low-temperature cooling requirement in many commercial and industrial applications where singlestage or multistage systems are insufficient. There are two cycles in a cascade refrigeration system: the high-temperature cycle (HTC) is used to absorbed the energy released by the low temperature cycle (LTC) during the condensation process. In this way, cascade refrigeration system can satisfy the lowtemperature cooling requirement range from -70°C to -90°C. As regards energy shortage problems, much attention has been devoted to the optimization of cascade refrigeration system performance. One of the research topics is the selection of refrigerant couples [6].

Application of a three-stage vapour compression system for evaporating temperature below -70° C is limited, because of difficulties with refrigerants reaching their freezing temperatures. The Montreal protocol and Kyoto underlined the need of substitution of CFC's and HCFC's regarding their bad impact on atmospheric ozone layer which protects earth from U.V rays. For many industrial and medical applications, very low temperatures are required. Thus the temperatures of the order of -80°C are required to freeze and store blood and for precipitation hardening of special alloy steels, temperatures as low as -90°C are required. To obtain such low temperature by conventional system as mentioned earlier becomes difficult because of extremely low evaporator pressures. R.S. Mishra^[7] deals with thermodynamic analysis of three stages cascade vapour compression refrigeration systems using eco-friendly refrigerants used for low temperature applications. The effect of thermal performance parameters on the first law thermal performances COP system and also in terms of second law efficiency of the cascade system and System exergy destruction ratio have been optimized thermodynamically using entropy generation principle. The utility of R1234ze and R1234yf and in the high temperature circuits and new ecofriendly refrigerants in the intermediates circuits and R134a or R404a in the low temperature cascade circuit have been optimized. It was observed that in the low temperature (between - 50°C to -100°C) applications. It was observed that the best combination in terms of R1234ze-R134a-R404a gives better thermal performance than using R1234yf-R134a-R404a. Similarly, other combination in terms of R1234ze-R134a-R404a gives better thermal performance than using R1234ze-R1234yf-R404a. In this paper the exergy computation of simple and cascaded vapour compression refrigeration have been carried out by methods suggested by Mishra [7] using HFO+HFC blends and detailed thermodynamic performances have bbe investigated.

2. Results and discussion

The vapour compression refrigeration systems have been used using ecofriendly refrigerants having HFC+HFO blends. For which following environmental parameters are given in Table 1.

S. No.	New Refrigerants	%(HFC+HFO Blends)	GWP	ODP	Safety
			Non flammable		Code
1	R513A	56%R1234yf,44% 134a	631 (573)	Non ozone depleting	A1
2	R515A	88%R1234ze,12% 227ea	387 (573)	Non ozone depleting	A1
3	R448A	26% R32,26% R125,20% R1234yf,7% R1234ze(E)	1273 to 1387	Non ozone depleting	A1
4	R449A	23.3% R32, 24.5% R125, 24.3% R1234yf, 25.5% R134a	1282 to 1387	Non ozone depleting	A1
5	R407H	32.5% R32, 15%R125, 52.5%R134a	1378 to 1495	Non ozone depleting	A1
6	R450A	58% R1234ze(E), 42% 134a	547 to 604	Non ozone depleting	A1
7	R454A	35% R32 , 65% R1234yf	238 - 239	Non ozone depleting	A2L
8	R454B	21.5% R32, 78.5% R1234yf	1377 to 1494	Non ozone depleting	A2L
9	R454C	21.5% R32, 78.5% R1234yf	139 to 148	Non ozone depleting	A2L
10	R452A	11%R32, 59%R125, 30%R1234yf	676 to 698	Non ozone depleting	A1
11	R452B	12.5%R32, 61%R125, 26.5%R1234yf	676 to 698	Non ozone depleting	A1

Table 1: Environmental parameters used in the simple and cascaded vapour compression refrigeration systems

In this study, an ideal vapour-compression system is used for the thermodynamic performance analysis of alternative new refrigerants using eight HFC+HFO blends as a substitute for replacing R134a in a vapour compression refrigeration system at varying evaporating temperature and condensing temperature have been investigated.

2.1 Effect of Evaporator temperature

on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP R452b refrigerants (HFC+HFO blends) using ecofriendly HFC+HFO blends. Table-2(a) to table-2(d) show the effect of evaporator temperature on first law efficiency (COP) of vapour compression refrigeration systems using R515A refrigerant (HFC +HFO Blends) and it was found that by increasing the evaporator temperature, the first law efficiency (COP) and exergy destruction ratio(EDR) increased while and exergetic efficiency of vapour compression refrigeration systems is decreased. Similarly, compressor work in form of exergy of input and heat rejected by the condenser decreased. The exergy destruction in compressor and evaporator increased while exergy destruction in condenser and expansion (throttle) valve and mass flow rate decreased. Similarly, by increasing dead state temperature the second law efficiency and exergetic efficiency is increased and first law efficiency (COP) remains same (i.e. does not affect)

Table 2(a): Effect of evaporator temperature in VCRS on thermodynamic performances of VCRS using ecofriendly low GWP R452b refrigerants (HFC+HFO blends) using ecofriendly HFC+HFO blends (Q_Eva_LTC=35.167 kW, T_cond=50°C, T_ambient=25°C, T_Eva_HTC=-30°C,

$T_{\underline{Eva_LTC}}$ =-75°C, Temperature overlapping=10, Compressor efficiency_ \underline{HTC} =80%, Compressor efficiency_ \underline{LTC} =80%								
Evaporator temperature in VCRS HFC +HFO Blends	-30	-25	-20	-15	-10	-5	0	
First Law Efficiency COP_vcrs	1.465	1.636	1.831	2.058	2.323	2.637	3.014	
Exergy Destruction Ratio	2.017	2.034	2.072	2.136	2.237	2.390	2.625	
Exergetic Efficiency	0.331	0.3296	0.3255	0.3189	0.3090	0.3195	0.3219	
Exergy of Fuel "kW"	2.40	2.15	1.92	1.709	1.514	1.334	1.167	
Exergy of Product "kW"	0.795	0.7086	0.6251	0.5449	0.4677	0.3934	0.3215	
Second Law Efficiency	0.482	0.4943	0.5064	0.5182	0.5296	0.5408	0.5517	
Mass flow Rate (Kg/sec)	0.0218	0.0215	0.0212	0.0209	0.0206	0.0204	0.0201	
Q_Cond_HTC "kW"	5.917	5.667	5.437	5.226	5.031	4.850	4.683	
Q_Eva_LTC "kW"	3.516	3.5167	3.5167	3.5167	3.5167	3.5167	3.5167	
Exergy Destruction in compressor(%)	15.37	15.61	15.83	16.05	16.26	16.46	16.66	
Exergy Destruction in condenser(%)	26.74	27.6	28.69	30.05	31.72	33.80	36.40	
Exergy Destruction in valve(%)	24.57	23.51	22.64	21.68	20.71	19.73	18.76	
Exergy Destruction in evaporator	0.181	0.2276	0.2818	0.3445	0.4170	0.5006	0.5971	

2.2 Effect of condenser temperature on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP R515A refrigerant (HFC+HFO blends) in higher temperature cycle

Table-3(a) to 3(c) show the effect of condenser temperature first law efficiency (COP) of vapour compression refrigeration systems using R515A refrigerants HFC +HFO Blends and it was found that by increasing the condenser temperature, the first law efficiency (COP) and exergetic efficiency decreases while exergy destruction ratio(EDR) of vapour compression refrigeration systems is increases. Similarly, compressor work in form of exergy of input and heat rejected by the condenser increased. The exergy destruction in compressor and evaporator decreased while exergy destruction in condenser and expansion (throttle) valve and mass flow rate increased. Similarly, by increasing dead state temperature the second law efficiency and exergetic efficiency is increased and first law efficiency (COP) remains same (i.e. does not affect).

<i>Table 2(b): Effect of</i> Evaporator temperature in VCRS <i>on thermodynamic performances of vapour compression refrigeration system using</i>
ecofriendly low GWP R452b refrigerants (HFC+HFO blends) using ecofriendly HFC+HFO blends (Q_Eva_LTC=35.167 kW, T_cond=50°C,
T_ambient=25°C, T_Eva_HTC=-30°C, T_Eva_LTC=-75°C, Temperature overlapping=10, Compressor efficiency_HTC=80%, Compressor

efficiency_LTC=80%									
Evaporator temperature in VCRS HFC +HFO Blends	-5	0	5	15	15				
First Law Efficiency COP_vcrs	2.637	3.014	3.475	4.052	4.792				
Exergy Destruction Ratio	2.390	2.625	3.002	3.659	5.014				
Exergetic Efficiency	0.2950	0.2619	0.2499	0.2146	0.1663				
Exergy of Fuel "kW"	1.334	1.167	1.012	0.8679	0.7339				
Exergy of Product "kW"	0.3934	0.3215	0.2529	0.1863	0.1220				
Second Law Efficiency	0.5408	0.5517	0.5623	0.5724	0.5820				
Mass flow Rate (Kg/sec)	0.0204	0.02019	0.02001	0.01986	0.01974				
Q_Cond_HTC "kW"	4.850	4.683	5.437	5.226	5.031				
Q_Eva_LTC "kW"	3.5167	3.5167	3.5167	3.5167	3.5167				
Exergy Destruction in compressor(%)	16.46	16.66	16.85	17.04	17.22				
Exergy Destruction in condenser(%)	33.80	36.40	39.66	43.84	49.31				
Exergy Destruction in valve(%)	19.73	18.76	17.79	16.82	15.84				
Exergy Destruction in evaporator	0.5006	0.5971	0.7088	0.8385	0.9907				

Table 2(c): Effect of Evaporator temperature in VCRS *on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP R515 refrigerants (HFC+HFO blends) using ecofriendly HFC+HFO blends (Q_Eva_trc=35.167 kW, T_cond=50°C, T_ambient=25°C, T_Eva_HTC=-30°C, T_Eva_trc=-75°C, Temperature overlapping=10, Compressor efficiency_HTC=80%, Compressor*

	efficienc	$y_{LTC}=80\%$					
Evaporator temperature in VCRS HFC +HFO Blends	-30	-25	-20	-15	-10	-5	0
First Law Efficiency COP_ vcrs	1.452	1.643	1.864	2.12	2.422	2.78	3.212
Exergy Destruction Ratio	2.045	2.020	2.018	2.044	2.105	2.216	2.018
Exergetic Efficiency	0.3285	0.3311	0.3313	0.3285	0.3221	0.311	0.3313
Exergy of Fuel "kW"	2.420	2.14	1.887	1.653	1.452	1.265	1.095
Exergy of Product "kW"	0.7955	0.7085	0.6251	0.5449	0.4677	0.3934	0.3628
Second Law Efficiency	0.4778	0.4967	0.5154	0.5339	0.5521	0.5701	0.5879
Mass flow Rate (Kg/sec)	0.0388	0.03733	0.03597	0.03471	0.03355	0.03248	0.03248
Q_Cond_HTC "kW"	5.939	5.657	5.403	5.175	4.969	4.7822	4.672
Q_Eva_LTC "kW"	3.5167	3.5167	3.5167	3.5167	3.5167	3.5167	3.5167

Table 2(d): Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP R513B refrigerants in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature cycle $(Q_Eva_{LTC}=35.167 \text{ kW}, T_{cond}=50^{\circ}\text{C}, T_{ambient}=40^{\circ}\text{C}, T_{Eva_{LTC}}=-30^{\circ}\text{C}, T_{Eva_{LTC}}=-75^{\circ}\text{C}, Temperature overlapping=10, Compressor efficiency HTC=80\%. Compressor efficiency HTC=80\%.$

Effect of evaporator temperature using HFC	-30	-25	-20	-15	-10	-5	0
+HFO Blends in VCRS							
First Law Efficiency COP_ vcrs	1.452	1.652	1.864	2.12	2.422	2.78	3.212
VCRS Exergetic Efficiency	0.418	0.4305	0.4418	0.4517	0.4601	0.4665	0.4703
Exergy of Fuel "kW"	2.422	2.14	1.887	1.659	1.452	1.265	1.095
Exergy of Product "kW"	1.012	1.012	1.012	1.012	1.012	1.012	1.012
Second Law Efficiency	0.4778	0.4967	0.5154	0.5339	0.5521	0.5701	0.5879
Mass flow Rate (Kg/sec)	0.0388	0.03733	0.03597	0.03471	0.03255	0.03248	0.03148
Q_Cond "kW"	5.939	5.657	5.403	5.175	4.969	4.7822	4.672
Q_Eva "kW"	3.5167	3.5167	3.5167	3.5167	3.5167	3.5167	3.5167

2.3 Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP refrigerant of HFC+HFO blends (R515B) in low GWP in VCRS cycle

Table-4(a) and table-4(b) shows the comparison of first law efficiency $(COP_{Cascade})$ of cascaded vapour compression

refrigeration systems using HFC +HFO Blends at dead state temperature of 313K (40°C) and it was found that vapour compression refrigeration systems using R515A gives highest first law efficiency and exergetic efficiency lowest exergy destruction ratio in vapour compression refrigeration systems with lowest exergy destruction ratio.

Table 3(a): Effect of condenser temperature in VCRS using on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP R515A refrigerant (HFC+HFO blends) in higher temperature cycle(Q_{LVC} =3.5167 kW, T_{cond} =50°C, T_ambient=25°C T_{\text{Eve}}=-30°C Compressor efficiency=80%

$T_{ambient=25^{\circ}C}$, $T_{Eva}=-30^{\circ}C$ Compressor efficiency=80%,									
Condenser temperature in VCRS using HFC +HFO Blends	60	55	50	45	40				
First Law Efficiency COP_ vcrs	1.138	1.296	1.465	1.649	1.853				
Exergy Destruction Ratio	2.886	2.411	2.017	1.681	1.386				
Exergetic Efficiency	0.2574	0.2932	0.3314	0.3730	0.4191				
Exergy of Fuel "kW"	3.091	2.713	2.40	2.133	1.898				
Exergy of Product "kW"	0.7955	0.7955	0.7955	0.7955	0.7955				
Second Law Efficiency	0.4211	0.4531	0.4820	0.5087	0.5334				
Mass flow Rate (Kg/sec)	0.02545	0.02347	0.0188	0.02055	0.01943				
Q_Cond_HTC "kW"	6.608	6.230	5.917	5.649	5.415				
Q_Eva_LTC "kW"	3.5167	3.5167	3.5167	3.5167	3.5167				
Exergy Destruction in compressor(%)	14.73	15.04	15.37	15.71	16.07				
Exergy Destruction in condenser(%)	30.60	28.90	26.74	24.09	20.86				
Exergy Destruction in valve(%)	28.79	26.58	24.57	22.70	20.93				
Exergy Destruction in evaporator	0.1405	0.1601	0.1810	0.2037	0.2288				

Table 3(b): Effect of Condenser temperature in VCRS using on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP R515A refrigerants (HFC+HFO blends) in higher temperature cycle (Q_Eva_LTC=3.5167 kW, T_cond=50°C, T_ambient=25°C_T_km=-30°C_compressor efficiency=80%

1_amblent=25°C, 1_Eva=-50°C Compressor efficiency=80%,										
Condenser temperature in VCRS using HFC +HFO Blends	60	55	50	45	40					
First Law Efficiency COP_vcrs	1.121	1.279	1.452	1.642	1.854					
Exergy Destruction Ratio	2.943	2.455	2.045	1.692	1.384					
Exergetic Efficiency	0.2536	0.2894	0.3285	0.3715	0.4194					
Exergy of Fuel "kW"	3.167	2.749	2.422	2.141	1.896					
Exergy of Product "kW"	0.7955	0.7955	0.7955	0.7955	0.7955					
Second Law Efficiency	0.4150	0.4473	0.4778	0.5066	0.5338					
Mass flow Rate (Kg/sec)	0.04617	0.04214	0.03881	0.03601	0.03363					
Q_Cond_HTC "kW"	6.654	6.265	5.939	5.658	5.413					
Q_Eva_LTC "kW"	3.5167	3.5167	3.5167	3.5167	3.5167					

Table 3(c): Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP refrigerant of HFC+HFO blends (R515B) in low GWP in VCRS cycle ($Q_Eva_LTC=3.5167$ kW, $T_cond=50^{\circ}$ C, $T_ambient=40^{\circ}$ C, $T_Eva=-30^{\circ}$ C Compressor efficiency=80%

50 C Compressor efficiency-0070									
Variation of condenser temperature using HFC +HFO Blends in VCRS	40	45	50	55	60				
First Law Efficiency COP_vcrs	1.854	1.642	1.452	1.279	1.121				
VCRS Exergetic Efficiency	0.5338	0.4728	0.4180	0.3683	0.3227				
Exergy of Fuel "kW"	1.896	2.141	2.422	2.749	3.137				
Exergy of Product "kW"	1.012	1.012	1.012	1.012	1.012				
Second Law Efficiency	0.5338	0.5066	0.4778	0.4473	0.4150				
Mass flow Rate (Kg/sec)	0.05338	0.03601	0.03881	0.04214	0.04617				
Q_Cond "kW"	5.413	5.658	5.939	6.265	6.654				
Q_Eva "kW"	3.5167	3.5167	3.5167	3.5167	3.5167				

Table 4(a): Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP refrigerant of HFC+HFO blends (R515B) in low GWP in VCRS cycle ($Q_{Eva_{LTC}}=3.5167 \text{ kW}$, $T_{cond}=50^{\circ}$ C, $T_{ambient}=25^{\circ}$ C, $T_{Eva}=-30^{\circ}$ C compressor efficiency=80%

50 C Compressor ejjiciency=80%										
Effect of HFC +HFO Blends in VCRS	R515A	R450A	R513A	R454B	R454C					
First Law Efficiency COP_ vcrs	1.452	1.417	1.381	1.434	1.235					
Exergy Destruction Ratio	2.045	2.119	2.202	2.083	2.581					
VCRS Exergetic Efficiency	0.3285	0.3206	0.3123	0.3243	0.2793					
Exergy of Fuel "kW"	2.422	2.481	2.547	2.453	2.848					
Exergy of Product "kW"	0.7955	0.7955	0.7955	0.7955	0.7955					
Second Law Efficiency	0.4778	0.4664	0.4543	0.4717	0.4062					
Mass flow Rate (Kg/sec)	0.03881	0.03682	0.04084	0.02206	0.03619					
Q_Cond "kW"	5.939	5.998	6.063	5.969	6.365					
Q_Eva_"kW"	3.5167	3.5167	3.5167	3.5167	3.5167					

Table 4(b): Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP refrigerant of HFC+HFO blends in VCRS cycle (Q_Eva_LTC=3.5167 kW, T_cond=50°C, T_ambient=40°C, T_Eva=-30°C Compressor afficiency=80%

	e	IJICIENCY=80%			
Effect of HFC +HFO Blends in VCRS	R515A	R450A	R513A	R454B	R454C
First Law Efficiency COP_ vcrs	1.452	1.417	1.381	1.434	1.235
VCRS Exergetic Efficiency	0.4180	0.4081	0.3975	0.4128	0.3555
Exergy of Fuel "kW"	2.422	2.481	2.547	2.453	2.848
Exergy of Product "kW"	1.012	1.012	1.012	1.012	1.012
Second Law Efficiency	0.4778	0.4081	0.4543	0.4128	0.4062
Mass flow Rate (Kg/sec)	0.03881	0.03682	0.04084	0.02206	0.03619
Q_Cond "kW"	5.939	5.998	6.063	5.969	6.365
Q_Eva_"kW"	3.5167	3.5167	3.5167	3.5167	3.5167

2.4 Thermodynamic performances of cascaded VCRS using HFO +HFC blends.

Similarly, table-4(c) and table-4(d) show the comparison of first law efficiency (COP_Cascade) of cascaded vapour compression refrigeration systems using HFC +HFO blends at

dead state temperature of 298K (25°C) and it was found that cascaded vapour compression refrigeration systems using R452B gives highest first law efficiency and exergetic efficiency lowest exergy destruction ratio in vapour compression refrigeration systems with lowest exergy destruction ratio.

Table 4(c): Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP refrigerant of HFC+HFO blends (R515B) in low GWP in VCRS cycle ($Q_Eva_LTC=3.5167$ kW, $T_cond=50^{\circ}$ C, $T_ambient=25^{\circ}$ C, $T_Eva=-30^{\circ}$ C Compressor efficiency=80%

HFC +HFO Blends in VCRS	R515A	R448A	R449A	R452A	R452B
First Law Efficiency COP_ vcrs	1.452	1.346	1.299	1.131	1.465
Exergy Destruction Ratio	2.045	2.284	2.402	2.909	2.017
Cascaded Exergetic Efficiency	0.3285	0.3045	0.2939	0.2558	0.3314
Exergy of Fuel "kW"	2.422	2.612	2.707	3.110	2.40
Exergy of Product "kW"	0.7955	0.7955	0.7955	0.7955	0.7955
Second Law Efficiency	0.4778	0.4430	0.4275	0.3721	0.4820
Mass flow Rate (Kg/sec)	0.03881	0.03140	0.03325	0.05028	0.02188
Q_Cond_HTC "kW"	5.939	6.129	6.223	6.626	5.917
Q_Eva_LTC "kW"	3.5167	3.5167	3.5167	3.5167	3.5167

Table 4(d): Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP refrigerant of HFC+HFO blends (R515B) in low GWP in VCRS cycle ($Q_Eva_LTC=3.5167$ kW, $T_cond=50^{\circ}$ C, $T_ambient=40^{\circ}$ C, $T_Eva=-30^{\circ}$ C Compressor efficiency=80%

50 C Compressor efficiency=60/6						
Effect of HFC +HFO Blends in VCRS	R515A	R448A	R449A	R452A	R452B	
First Law Efficiency COP_ vcrs	1.452	1.452	1.417	1.381	1.434	
VCRS Exergetic Efficiency	0.4180	0.3876	0.3741	0.3256	0.4216	
Exergy of Fuel "kW"	2.422	2.612	2.707	3.110	2.40	
Exergy of Product "kW"	1.012	1.012	1.012	1.012	1.012	
Second Law Efficiency	0.4778	0.4430	0.4295	0.3721	0.4820	
Mass flow Rate (Kg/sec)	0.03881	0.03881	0.03682	0.04084	0.02206	
Q_Cond "kW"	5.939	2.612	2.707	3.110	2.40	
Q_Eva_"kW"	3.5167	3.5167	3.5167	3.5167	3.5167	

2.5 Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP HFC+HFO refrigerants in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature

Table-5 (a) and Table-5(b) show the comparison of first law efficiency ($COP_{Cascade}$) of cascaded vapour compression refrigeration systems using HFC +HFO Blends in high temperature cycle and HFC +HFO Blends in low temperature

cycle and it was found that cascaded vapour compression refrigeration systems using R454B in high temperature cycle and R515A in low temperature cycle gives higher first law efficiency and exergetic efficiency lower exergy destruction ratio and cascaded vapour compression refrigeration systems using R454B in high temperature cycle and R454C in low temperature cycle gives lower first law efficiency (COP_Cascade) and exergetic efficiency and higher exergy destruction ratio

Table 5(a): Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low
GWP HFC+HFO refrigerants in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature
cycle (Q_Eva_LTC=35.167 kW, T_cond=50°C, T_ambient=25°C, T_Eva_HTC=-30°C, T_Eva_LTC=-75°C, Temperature overlapping=10, Compressor
efficiency utc=80% Compressor efficiency utc=80%

efficiency_HTC=80%, Compressor efficiency_LTC=80%							
Cascaded VCRS	System1	System2	System3	System4	System5	System6	
HFC +HFO Blends in HTC	R513A	R454B	R450 A	R454C	R454C	R454C	
HFC +HFO Blends in LTC	R454C	R454C	R454C	R513A	R454B	R452A	
First Law Cascaded Efficiency COP_ Cascade	0.6214	0.5401	0.6325	0.6265	0.6093	0.5855	
Cascade Exergy Destruction Ratio(EDR_ Cascade)	2.189	2.669	2.133	2.163	2.252	2.385	
Cascaded Exergetic Efficiency	0.3136	0.2726	0.3192	0.3162	0.3075	0.2955	
Exergy of Fuel "kW"	56.60	65.11	55.60	56.13	57.72	60.07	
Exergy of Product "kW"	17.75	17.75	17.75	17.75	17.75	17.75	
HTC Mass flow Rate (Kg/sec)	0.6181	0.7610	0.6572	0.5191	0.5281	0.5414	
LTC Mass flow Rate (Kg/sec)	0.2061	0.2061	0.2061	0.2291	0.1381	0.2516	
Q_Cond_HTC "kW"	91.76	100.3	90.77	91.30	92.88	95.24	
Q_Cond_LTC "kW"	53.22	53.22	53.22	50.44	51.32	52.62	
Q_Eva_HTC "kW"	53.22	53.22	53.22	50.44	51.32	52.62	
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167	35.167	35.167	
First Law LTC Efficiency COP_LTC	1.948	1.948	1.948	2.302	2.177	2.015	
First Law HTC Efficiency COP_ HTC	1.381	1.131	1.417	1.235	1.236	1.236	
HTCExergy Destruction Ratio(EDR_HTC)	2.202	2.909	2.119	2.581	2.581	2.581	
HTC Exergetic Efficiency	0.3123	0.2558	0.3206	0.2793	0.2793	0.2793	
HTC Exergy of Fuel "kW"	38.54	47.06	37.55	40.85	41.57	42.62	
HTC Exergy of Product "kW"	12.04	11.90	12.04	11.41	11.61	11.90	
W_comp_HTc"kW"	38.54	47.06	37.55	40.85	41.57	42.62	
W_comp_LTC "kW"	18.05	18.05	18.05	16.15	16.15	17.45	

Table 5(b): Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP HFC+HFO blends in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature cycle $(Q_Eva_LTC=35.167 \text{ kW}, T_cond=50^\circ\text{C}, T_ambient=25^\circ\text{C}, T_eva_HTC=-30^\circ\text{C}, T_eva_LTC=-75^\circ\text{C}, Temperature overlapping=10, Compressor efficiency, user 80% Compressor of the interval of the$

efficiency_HTC=80%, Compressor efficiency_LTC=80%								
Effect of HFC +HFO Blends in VCRS	System-7	System8	System9	System10	System11	System12		
HFC +HFO Blends in HTC	R452A	R452A	R513A	R513A	R454B	R452a		
HFC +HFO Blends in LTC	R513A	R454B	R452A	R454B	R513a	R454B		
First Law Cascaded Efficiency COP_ Cascade	0.5873	0.5715	0.6330	0.6596	0.6970	0.6494		
Exergy Destruction Ratio(EDR_ Cascade)	2.374	2.467	2.130	2.004	1.843	2.051		
Cascaded Exergetic Efficiency	0.2964	0.2884	0.3194	0.3329	0.3510	0.3277		
Exergy of Fuel "kW"	59.88	61.53	55.56	53.32	50.45	54.15		
Exergy of Product "kW"	17.75	17.75	17.75	17.75	17.75	17.75		
HTC Mass flow Rate (Kg/sec)	0.7213	0.7338	0.6111	0.5960	0.3164	0.330		
LTC Mass flow Rate (Kg/sec)	0.2291	0.1368	0.2516	0.1368	0.2291	0.2516		
Q_Cond_HTC "kW"	95.05	96.7	90.72	88.49	85.62	89.32		
Q_Cond_LTC "kW"	50.44	51.32	52.62	51.32	50.44	52.62		
Q_Eva_HTC "kW"	50.44	51.32	52.62	51.32	50.44	52.62		
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167	35.167	35.167		
First Law LTC Efficiency COP_LTC	2.302	2.177	2.015	2.177	2.302	2.015		
First Law HTC Efficiency COP_ HTC	1.131	1.131	1.381	1.381	1.434	1.434		
HTCExergy Destruction Ratio(EDR_HTC)	2.909	2.909	2.202	2.202	2.083	2.083		
HTC Exergetic Efficiency	0.2558	0.2558	0.3123	0.3123	0.3243	0.3243		
HTC Exergy of Fuel "kW"	44.6	45.38	38.11	37.17	35.18	36.7		
HTC Exergy of Product "kW"	11.41	11.61	11.90	11.61	11.41	11.90		
W_comp_HTC"kW"	44.6	45.38	38.11	37.17	35.18	36.7		
W_comp_LTC "kW"	15.28	16.15	17.45	16.15	15.28	17.45		

2.6 Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using low GWP ecofriendly HFC+HFO refrigerants in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in ultra-low temperature Table-6 (a) shows the comparison of first law efficiency (COP_Cascade) of cascaded vapour compression refrigeration systems using HFC +HFO Blends in high temperature cycle and HFC +HFO Blends in low temperature cycle and it was found that cascaded vapour compression refrigeration systems

using *R513A* in high temperature cycle and R515A in low temperature cycle gives higher first law efficiency and exergetic efficiency and lower exergy destruction ratio and cascaded vapour compression refrigeration systems using

R515A in high temperature cycle and R449A in low temperature cycle gives lower first law efficiency (COP_Cascade) and exergetic efficiency and higher exergy destruction ratio.

Table 6(a): Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly lowGWP R513A (HFC+HFO blends) in higher temperature cycle using following ecofriendly HFC+HFO blends in low GWP refrigerant in lowtemperature cycle ($Q_Eva_{LTC}=35.167 \text{ kW}, T_{cond}=50^{\circ}\text{C}, T_{ambient}=25^{\circ}\text{C}, T_{Eva_{LTC}}=-30^{\circ}\text{C}, T_{Eva_{LTC}}=-90^{\circ}\text{C}, Temperature overlapping=10},Compressor efficiencyCompressor efficiencyHTC=80%$

Compressor efficiency_ HTC =80%, Compressor efficiency_ LTC =80%							
Effect of HFC +HFO Blends in VCRS	System1	System2	System3	System4			
HFC +HFO Blends in HTC	R513A	R513A	R513A	R513A			
HFC +HFO Blends in LTC	R515A	R449A	R454B	R454C			
First Law Cascaded Efficiency COP_ Cascade	0.540	0.4969	0.5232	0.4971			
Exergy Destruction Ratio(EDR_ Cascade)	1.949	2.205	2.044	2.204			
Cascaded Exergetic Efficiency	0.3391	0.3120	0.3285	0.3121			
Exergy of Fuel "kW"	65.12	70.77	67.21	70.75			
Exergy of Product "kW"	22.08	22.08	22.08	22.08			
HTC Mass flow Rate (Kg/s)	0.6755	0.7135	0.6896	0.7134			
LTC Mass flow Rate (Kg/s)	0.2541	0.2021	0.1413	0.2183			
Q_Cond_HTC "kW"	100.30	105.90	102.40	105.9			
Q_Cond_LTC "kW"	58.16	61.44	59.38	61.43			
Q_Eva_HTC "kW"	58.16	61.44	59.38	61.43			
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167			
First Law LTC Efficiency COP_LTC	1.529	1.338	1.452	1.339			
First Law HTC Efficiency COP_ HTC	1.381	1.381	1.381	1.381			
HTCExergy Destruction Ratio(EDR_HTC)	2.202	2.202	2.202	2.202			
HTC Exergetic Efficiency	0.3123	0.3123	0.3123	0.3123			
HTC Exergy of Fuel "kW"	42.12	44.50	43.0	44.49			
HTC Exergy of Product "kW"	13.16	13.90	13.43	13.90			
W_comp_HTC"kW"	42.12	44.50	43.0	44.49			
W_comp_LTC "kW"	23.0	26.27	24.21	26.26			

Table-6 (b) shows the comparison of first law efficiency (COP_Cascade) of cascaded vapour compression refrigeration systems using HFC +HFO Blends in high temperature cycle and HFC +HFO Blends in low temperature cycle and it was found that cascaded vapour compression refrigeration systems using R454B in high temperature cycle and R513A in low temperature cycle gives higher first law efficiency and

exergetic efficiency and lower exergy destruction ratio and cascaded vapour compression refrigeration systems using R454B in high temperature cycle and R454C in low temperature cycle gives lower first law efficiency (COP_Cascade) and exergetic efficiency and higher exergy destruction ratio

Table 6(b): Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP R454B (HFC+HFO blends) in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature cycle $(Q_Eva_{LTC}=35.167 \text{ kW}, T_{cond}=50^{\circ}\text{C}, T_{ambient}=25^{\circ}\text{C}, T_{Eva_{HTC}}=-30^{\circ}\text{C}, T_{Eva_{LTC}}=-90^{\circ}\text{C}, T_{emperature overlapping}=10, Compressor efficiency, use -80%$

efficiency_htc=80%, Compressor efficiency_htc=80%							
Effect of HFC +HFO Blends in VCRS	System-5	System-6	System-7	System-8			
HFC +HFO Blends in HTC	R454B	R454B	R454B	R454B			
HFC +HFO Blends in LTC	R515A	R513A	R449A	R454C			
First Law Cascaded Efficiency (COP Cascade)	0.5619	0.5652	0.5168	0.5164			
Exergy Destruction Ratio(EDR_ Cascade)	1.834	1.818	2.082	2.084			
Cascaded Exergetic Efficiency	0.3528	0.3549	0.3285	0.3528			
Exergy of Fuel "kW"	62.59	62.23	68.05	68.09			
Exergy of Product "kW"	22.08	22.08	22.08	22.08			
HTC Mass flow Rate (Kg/sec)	0.3570	0.3557	0.3770	0.3772			
LTC Mass flow Rate (Kg/sec)	0.2541	0.2440	0.2184	0.2021			
Q_Cond_HTC "kW"	97.75	97.39	103.20	103.30			
Q_Cond_LTC "kW"	58.16	57.95	61.42	61.44			
Q_Eva_HTC "kW"	58.16	57.95	61.42	61.44			
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167			
First Law LTC Efficiency COP_LTC	1.529	1.544	1.340	1.338			

First Law HTC Efficiency COP_ HTC	1.469	1.469	1.469	1.469
HTCExergy Destruction Ratio(EDR_HTC)	2.009	2.009	2.009	2.009
HTC Exergetic Efficiency	0.3323	0.3323	0.3323	0.3323
HTC Exergy of Fuel "kW"	39.59	39.44	41.80	41.82
HTC Exergy of Product "kW"	13.16	13.11	13.89	13.90
W_comp_HTC"kW"	39.59	39.44	41.80	41.82
W_comp_LTC "kW"	23.0	22.78	26.25	26.27

Table-6 (c) shows the comparison of first law efficiency (COP_Cascade) of cascaded vapour compression refrigeration systems using R449A (HFC +HFO Blends) in high temperature cycle and following HFC +HFO Blends in low temperature cycle and it was found that cascaded vapour compression refrigeration systems using R449A in high temperature cycle and R513A in low temperature cycle gives

higher first law efficiency and exergetic efficiency and lower exergy destruction ratio and cascaded vapour compression refrigeration systems using R449A in high temperature cycle and R454C in low temperature cycle gives lower first law efficiency (COP_Cascade) and exergetic efficiency and higher exergy destruction ratio

Table 6(c): Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP R449A (HFC+HFO blends) in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature cycle ($Q_Eva_{LTC}=35.167$ kW, $T_{cond}=50^{\circ}$ C, $T_{ambient}=25^{\circ}$ C, $T_{Eva_{HTC}}=-30^{\circ}$ C, $T_{Eva_{LTC}}=-90^{\circ}$ C, Temperature overlapping=10, Compressor afficiency, use = 80° C

efficiency_htc=80%, Compressor efficiency_htc=80%							
Effect of HFC +HFO Blends in VCRS	System-9	System-10	System-11	System-12			
HFC +HFO Blends in HTC	R449A	R449A	R449A	R449A			
HFC +HFO Blends in LTC	R515A	R513A	R454B	R454C			
First Law Cascaded Efficiency (COP Cascade)	0.5190	5219	0.5031	0.4783			
Exergy Destruction Ratio(EDR_ Cascade)	2.069	2.052	2.165	2.329			
Cascaded Exergetic Efficiency	0.3259	0.3277	0.3159	0.3004			
Exergy of Fuel "kW"	67.76	67.38	69.90	73.52			
Exergy of Product "kW"	22.08	22.08	22.08	22.08			
HTC Mass flow Rate (Kg/s)	0.5499	0.5478	0.5613	0.5806			
LTC Mass flow Rate (Kg/s)	0.2541	0.2440	0.1413	0.2184			
Q_Cond_HTC "kW"	102.9	102.5	105.1	108.7			
Q_Cond_LTC "kW"	58.16	57.95	59.37	61.42			
Q_Eva_HTC "kW"	58.16	57.95	59.37	61.42			
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167			
First Law LTC Efficiency COP_LTC	1.529	1.544	1.453	1.340			
First Law HTC Efficiency COP_ HTC	1.299	1.299	1.299	1.299			
HTCExergy Destruction Ratio(EDR_HTC)	2.402	2.402	2.402	2.402			
HTC Exergetic Efficiency	0.2939	0.2939	0.2939	0.2939			
HTC Exergy of Fuel "kW"	44.77	44.60	45.69	47.27			
HTC Exergy of Product "kW"	13.16	13.11	13.43	13.89			
W_comp_HTC"kW"	44.77	44.60	45.69	47.27			
W_comp_LTC "kW"	23.0	22.78	24.20	26.25			

Table-6 (d) shows the comparison of first law efficiency $(COP_{Cascade})$ of cascaded vapour compression refrigeration systems using R449A (HFC +HFO Blends) in high temperature cycle and following HFC +HFO Blends in low temperature cycle and it was found that cascaded vapour compression refrigeration systems using R454C in high temperature cycle and R513A in low temperature cycle gives higher first law efficiency and exergetic efficiency and lower exergy destruction ratio and cascaded vapour compression refrigeration systems using R454C in high temperature cycle and R513A in low temperature cycle gives higher first law efficiency and exergetic efficiency and lower exergy destruction ratio and cascaded vapour compression refrigeration systems using R454C in high temperature cycle and R449A in low temperature cycle gives lower first law efficiency (COP_Cascade) and exergetic efficiency and higher exergy destruction ratio.

Table-6 (e) shows the comparison of first law efficiency (COP_Cascade) of cascaded vapour compression refrigeration systems using R515A (HFC +HFO Blends) in high temperature cycle and following HFC +HFO Blends in low temperature cycle and it was found that cascaded vapour compression refrigeration systems using R515A in high temperature cycle and R513A in low temperature cycle gives higher first law efficiency and exergetic efficiency and lower exergy destruction ratio and cascaded vapour compression refrigeration systems using R515A in high temperature cycle and R515A in high temperature cycle gives higher first law efficiency and exergetic efficiency and lower exergy destruction ratio and cascaded vapour compression refrigeration systems using R515A in high temperature cycle and R454C in low temperature cycle gives lower first law efficiency (COP_Cascade) and exergetic efficiency and higher exergy destruction ratio.

Table 6(d): Effect of HFC+HFO blends on thermodynamic performances of VCRS using low GWP R454C (HFC+HFO blends) in higher temperature cycle using HFC+HFO blends in low GWP refrigerant in low temperature cycle (Q_Eva_LTC=35.167 kW, T_cond=50°C, T_ambient=25°C, T_ambient=

$T_{ambient=25^{\circ}C}$, $T_{Eva_{HTC}}=-30^{\circ}C$, $T_{Eva_{LTC}}=-90^{\circ}C$, Temperature overlapping=10, Compressor efficiency_ HTC =80%							
Effect of HFC +HFO Blends in VCRS	System13	System14	System15	System16			
HFC +HFO Blends in HTC	R454C	R454C	R454C	R454C			
HFC +HFO Blends in LTC	R515A	R513A	R454B	R449A			
First Law Cascaded Efficiency COP_ Cascade	0.4953	0.4981	0.4804	0.4569			
Exergy Destruction Ratio(EDR_ Cascade)	2.215	2.197	2.315	2.486			
Cascaded Exergetic Efficiency	0.3110	0.3128	0.3017	0.2869			
Exergy of Fuel "kW"	71.0	70.60	73.20	76.98			
Exergy of Product "kW"	22.08	22.08	22.08	22.08			
HTC Mass flow Rate (Kg/s)	0.6156	0.6133	0.6284	0.6503			
LTC Mass flow Rate (Kg/s)	0.2541	0.2440	0.1413	0.2021			
Q_Cond_HTC "kW"	106.2	105.8	108.4	112.1			
Q_Cond_LTC "kW"	58.16	57.95	59.37	61.44			
Q_Eva_HTC "kW"	58.16	57.95	59.37	61.44			
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167			
First Law LTC Efficiency COP_LTC	1.529	1.544	1.543	1.338			
First Law HTC Efficiency COP_ HTC	1.212	1.212	1.212	1.212			
HTCExergy Destruction Ratio(EDR_HTC)	2.648	2.648	2.648	2.648			
HTC Exergetic Efficiency	0.2741	0.2741	0.2741	0.2741			
HTC Exergy of Fuel "kW"	48.0	47.82	48.99	50.70			
HTC Exergy of Product "kW"	13.16	13.11	13.43	13.90			
W_comp_HTC"kW"	48.0	47.82	48.99	50.70			
W_comp_LTC "kW"	23.0	22.78	24.20	26.27			

Table 6(e): Effect of HFC+HFO blends on thermodynamic performances of VCRS using ecofriendly low GWP R515A (HFC+HFO blends) in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature cycle (Q_Eva_LTC=35.167 kW, T_cond=50°C, T_ambient=25°C, T_Eva_HTC=-30°C, T_Eva_LTC=-90°C, Temperature overlapping=10, Compressor efficiency_HTC=80%

50°C, T_ambient=25°C, T_Eva_HTC=-30°C, T_Eva_LTC=-90°C, Temperature overlapping=10, Compressor efficiency_HTC							
Effect of HFC +HFO Blends in VCRS	System-17	System- 18	System- 19	System- 20			
HFC +HFO Blends in HTC	R515A	R515A	R515A	R515A			
HFC +HFO Blends in LTC	R513A	R449A	R454B	R454C			
First Law Cascaded Efficiency COP_ Cascade	0.5610	0.5403	0.5130	0.5127			
Exergy Destruction Ratio(EDR_ Cascade)	1.839	1.948	2.104	2.106			
Cascaded Exergetic Efficiency	0.3522	0.3392	0.3221	0.3219			
Exergy of Fuel "kW"	62.69	65.09	68.55	68.59			
Exergy of Product "kW"	22.08	22.08	22.08	22.08			
HTC Mass flow Rate (Kg/sec)	0.6395	0.6552	0.6778	0.6780			
LTC Mass flow Rate (Kg/sec)	0.2440	0.1413	0.2184	0.2021			
Q_Cond_HTC "kW"	97.86	100.3	103.7	103.8			
Q_Cond_LTC "kW"	57.95	59.37	61.42	61.44			
Q_Eva_HTC "kW"	57.95	59.37	61.42	61.44			
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167			
First Law LTC Efficiency COP_LTC	1.544	1.453	1.340	1.338			
First Law HTC Efficiency COP_ HTC	1.452	1.452	1.452	1.452			
HTCExergy Destruction Ratio (EDR_HTC)	2.045	2.045	2.045	2.045			
HTC Exergetic Efficiency	0.3285	0.3285	0.3285	0.3285			
HTC Exergy of Fuel "kW"	39.39	40.89	42.30	42.31			
HTC Exergy of Product "kW"	13.11	13.43	13.89	13.90			
W_comp_HTC"kW"	39.39	40.89	42.30	42.31			
W_comp_LTC "kW"	22.78	24.20	26.25	26.27			

Table-6(f) shows the comparison of first law efficiency $(COP_{Cascade})$ of cascaded vapour compression refrigeration systems using R448A (HFC +HFO Blends) in high temperature cycle and following HFC +HFO Blends in low temperature cycle and it was found that cascaded vapour compression refrigeration systems using R448A in high temperature cycle and R513A in low temperature cycle gives

higher first law efficiency and exergetic efficiency and lower exergy destruction ratio and cascaded vapour compression refrigeration systems using R448A in high temperature cycle and R449A in low temperature cycle gives lower first law efficiency (COP_Cascade) and exergetic efficiency and higher exergy destruction ratio

Table-6 (g) shows the comparison of first law efficiency

(COP_Cascade) of cascaded vapour compression refrigeration systems using R450A (HFC +HFO Blends) in high temperature cycle and following HFC +HFO Blends in low temperature cycle and it was found that cascaded vapour compression refrigeration systems using R450A in high temperature cycle and R513A in low temperature cycle gives higher first law efficiency and exergetic efficiency and lower exergy destruction ratio and cascaded vapour compression refrigeration systems using R450A in high temperature cycle and R449A in low temperature cycle gives lower first law efficiency (COP_Cascade) and exergetic efficiency and higher exergy destruction ratio

Table-6 (h) shows the comparison of first law efficiency (COP_Cascade) of cascaded vapour compression refrigeration systems using R452A (HFC +HFO Blends) in high temperature cycle and following HFC +HFO Blends in low temperature cycle and it was found that cascaded vapour compression refrigeration systems using R452A in high temperature cycle and R513A in low temperature cycle gives

higher first law efficiency and exergetic efficiency and lower exergy destruction ratio and cascaded vapour compression refrigeration systems using R452A in high temperature cycle and R449A in low temperature cycle gives lower first law efficiency (COP_Cascade) and exergetic efficiency and higher exergy destruction ratio

Table-6 (i) shows the comparison of first law efficiency (COP_Cascade) of cascaded vapour compression refrigeration systems using R452B (HFC +HFO Blends) in high temperature cycle and following HFC +HFO Blends in low temperature cycle and it was found that cascaded vapour compression refrigeration systems using R452B in high temperature cycle and R513A in low temperature cycle gives higher first law efficiency and exergetic efficiency and lower exergy destruction ratio and cascaded vapour compression refrigeration systems using R452B in high temperature cycle and R513A in low temperature cycle gives higher first law efficiency and exergetic efficiency and lower exergy destruction ratio and cascaded vapour compression refrigeration systems using R452B in high temperature cycle and R449A in low temperature cycle gives lower first law efficiency (COP_Cascade) and exergetic efficiency and higher exergy destruction ratio

Table 6(f): Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP R448A (HFC+HFO blends) in higher temperature cycle using ecofriendly following HFC+HFO blends in low GWP refrigerant in low temperature cycle (Q_Eva_Ltc=35.167 kW, T_cond=50°C, T_ambient=25°C, T_Eva_Htc=-30°C, T_Eva_Ltc=-90°C, Temperature overlapping=10, compressor efficiency_usc=80%

Compressor efficiency_HTC=80%, Compressor efficiency_LTC=80%,							
Effect of HFC +HFO Blends in VCRS	System21	System-22	System23	System24	System25		
HFC +HFO Blends in HTC	R448A	R448A	R448A	R448A	R448A		
HFC +HFO Blends in LTC	R515A	R513A	R454B	R454C	R449A		
First Law Cascaded Efficiency COP_ Cascade	0.5312	0.5342	0.5148	0.4892	0.4890		
Exergy Destruction Ratio(EDR_Cascade)	1.998	1.981	2.094	2.256	2.257		
Cascaded Exergetic Efficiency	0.3335	0.3355	0.3232	0.3071	0.3070		
Exergy of Fuel "kW"	66.20	65.85	68.32	71.89	71.91		
Exergy of Product "kW"	22.08	22.08	22.08	22.08	22.08		
HTC Mass flow Rate (Kg/sec)	0.5193	0.5174	0.5301	0.5484	0.5485		
LTC Mass flow Rate (Kg/sec)	0.2541	0.2440	0.1413	0.2183	0.2021		
Q_Cond_HTC "kW"	101.4	101.0	103.50	107.10	107.10		
Q_Cond_LTC "kW"	58.16	57.95	59.38	61.43	61.44		
Q_Eva_HTC "kW"	58.16	57.95	59.38	61.43	61.44		
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167	35.167		
First Law LTC Efficiency COP_LTC	1.529	1.544	1.452	1.339	1.338		
First Law HTC Efficiency COP_ HTC	1.346	1.346	1.346	1.346	1.346		
HTCExergy Destruction Ratio(EDR_HTC)	2.284	2.284	2.284	2.284	2.284		
HTC Exergetic Efficiency	0.3045	0.3045	0.3045	0.3045	0.3045		
HTC Exergy of Fuel "kW"	43.20	43.04	44.14	45.63	45.64		
HTC Exergy of Product "kW"	13.16	13.11	13.43	13.90	13.90		
W_comp_HTC"kW"	43.20	43.04	44.14	45.63	45.64		
W_comp_LTC "kW"	23.0	22.78	24.21	26.26	26.27		

Table 6(g): Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP R450A (HFC+HFO blends) in higher temperature cycle using ecofriendly following HFC+HFO blends in low GWP refrigerant in low temperature cycle ($Q_Eva_{LTC}=35.167 \text{ kW}, T_{cond}=50^{\circ}C, T_{ambient}=25^{\circ}C, T_{Eva_{LTC}}=-30^{\circ}C, T_{eva_{LTC}}=-90^{\circ}C, Temperature overlapping=10, Compressor efficiency user=80\%$

Compressor efficiency_HTC=8076, Compressor efficiency_LTC=8076,						
Effect of HFC +HFO Blends in VCRS	System-26	System27	System28	System29	System30	
HFC +HFO Blends in HTC	R450A	R450A	R450A	R450A	R450A	
HFC +HFO Blends in LTC	R515A	R513A	R454B	R454C	R449A	
First Law Cascaded Efficiency COP_ Cascade	0.5492	0.5524	0.5321	0.5054	0.5051	
Exergy Destruction Ratio(EDR_ Cascade)	1.90	1.883	1.993	2.151	2.153	
Cascaded Exergetic Efficiency	0.3448	0.3468	0.3341	0.3174	0.3172	
Exergy of Fuel "kW"	64.03	63.66	66.09	69.58	69.62	

Exergy of Product "kW"	22.08	22.08	22.08	22.08	22.08
HTC Mass flow Rate (Kg/sec)	0.6089	0.6067	0.6216	0.6430	0.6432
LTC Mass flow Rate (Kg/sec)	0.2541	0.2440	0.1413	0.2184	0.2021
Q_Cond_HTC "kW"	99.2	98.83	101.3	104.7	104.7
Q_Cond_LTC "kW"	58.16	57.95	59.37	61.42	61.44
Q_Eva_HTC "kW"	58.16	57.95	59.37	61.42	61.44
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167	35.167
First Law LTC Efficiency COP_LTC	1.529	1.544	1.453	1.340	1.338
First Law HTC Efficiency COP_ HTC	1.417	1.417	1.417	1.417	1.417
HTCExergy Destruction Ratio(EDR_HTC)	2.119	2.119	2.119	2.119	2.119
HTC Exergetic Efficiency	0.3206	0.3206	0.3206	0.3206	0.3206
HTC Exergy of Fuel "kW"	41.03	40.88	41.89	43.33	43.35
HTC Exergy of Product "kW"	13.16	13.11	13.43	13.89	13.90
W_comp_HTC"kW"	41.03	40.88	41.89	43.33	43.35
W_comp_LTC "kW"	23.0	22.78	24.20	26.25	26.27

Table 6(h): Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP R452A (HFC+HFO blends) in higher temperature cycle using following ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature cycle ($Q_Eva_{LTC}=35.167$ kW, $T_{cond}=50^{\circ}$ C, $T_{ambient}=25^{\circ}$ C, $T_{Eva_{LTC}}=-30^{\circ}$ C, $T_{Eva_{LTC}}=-90^{\circ}$ C, Temperature overlapping=10,

Compressor eff	<u>ісіепсу_нтс=80%</u>	, Compressor effi	$ciency_ttc=80\%$,		
Effect of HFC +HFO Blends in VCRS	System-31	System32	System33	System34	System35
HFC +HFO Blends in HTC	R452A	R452A	R452A	R452A	R452A
HFC +HFO Blends in LTC	R515A	R513A	R454B	R454C	R449A
First Law Cascaded Efficiency COP_ Cascade	0.4725	0.4751	0.4585	0.4366	0.4363
Exergy Destruction Ratio(EDR_ Cascade)	2.371	2.352	2.474	2.648	2.650
Cascaded Exergetic Efficiency	0.2967	0.2943	0.2879	0.2741	0.2740
Exergy of Fuel "kW"	74.43	74.02	76.70	80.56	80.60
Exergy of Product "kW"	22.08	22.08	22.08	22.08	22.08
HTC Mass flow Rate (Kg/sec)	0.8317	0.8286	0.8489	0.8782	0.8785
LTC Mass flow Rate (Kg/sec)	0.2541	0.2440	0.1413	0.2183	0.2021
Q_Cond_HTC "kW"	109.6	109.2	111.9	115.7	115.80
Q_Cond_LTC "kW"	58.16	57.95	59.38	61.43	61.44
Q_Eva_HTC "kW"	58.16	57.95	59.38	61.43	61.44
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167	35.167
First Law LTC Efficiency COP_LTC	1.529	1.544	1.453	1.340	1.338
First Law HTC Efficiency COP_ HTC	1.131	1.131	1.131	1.131	1.131
HTCExergy Destruction Ratio(EDR_HTC)	2.909	2.909	2.909	2.909	2.909
HTC Exergetic Efficiency	0.2558	0.2558	0.2558	0.2558	0.2558
HTC Exergy of Fuel "kW"	51.43	51.24	52.50	54.31	54.33
HTC Exergy of Product "kW"	13.16	13.11	13.43	13.89	13.90
W_comp_HTC"kW"	51.43	51.24	52.50	54.31	54.33
W_comp_LTC "kW"	23.0	22.78	24.20	26.25	26.27

2.7 Optimum thermodynamic performances of vapour compression refrigeration system using low GWP ecofriendly HFC+HFO refrigerants in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in ultra-low temperature

Table-7 shows the comparison of first law efficiency (COPCascade) and exergetic efficiency of cascaded vapour compression refrigeration systems using following (HFC +HFO Blends) in high temperature cycle and following HFC +HFO Blends in low temperature cycle and it was found that cascaded vapour compression refrigeration systems using

R452B in high temperature cycle and R513A in low temperature cycle gives higher first law efficiency and exergetic efficiency and lower exergy destruction ratio and cascaded vapour compression refrigeration systems using R452A in high temperature cycle and R513A in low temperature cycle gives lower first law efficiency (COP_Cascade) and exergetic efficiency and higher exergy destruction ratio. The thermodynamic performances using R452B and R515 in high temperature cycle and R513A in low temperature cycle gives slightly lower thermodynamic performances than using R454B in higher temperature cycle and R513A in the low temperature cycle.

Table 6(i): Effect of HFC+HFO blends on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP
R-452B (HFC+HFO blends) in higher temperature cycle using ecofriendly following HFC+HFO blends in low GWP refrigerant in low
temperature cycle (Q_Eva_trc=35.167 kW, T_cond=50°C, T_ambient=25°C, T_Eva_HTC=-30°C, T_Eva_trc=-90°C, Temperature overlapping=10,

	ciency_нтc=80%,	Compressor efficient	iency_ltc=80%,		
Effect of HFC +HFO Blends in VCRS	System-36	System37	System38	System39	System40
HFC +HFO Blends in HTC	R452B	R452B	R452B	R452B	R452B
HFC +HFO Blends in LTC	R515A	R513A	R454B	R454C	R449A
First Law Cascaded Efficiency COP_ Cascade	0.5609	0.5642	0.5433	0.5159	0.5156
Exergy Destruction Ratio(EDR_ Cascade)	1.839	1.823	1.931	2.087	2.089
Cascaded Exergetic Efficiency	0.3522	0.3542	0.3411	0.3239	0.3237
Exergy of Fuel "kW"	62.70	62.34	64.73	68.17	68.21
Exergy of Product "kW"	22.08	22.08	22.08	22.08	22.08
HTC Mass flow Rate (Kg/sec)	0.3618	0.3605	0.3693	0.3820	0.3822
LTC Mass flow Rate (Kg/sec)	0.2541	0.2440	0.1413	0.2184	0.2021
Q_Cond_HTC "kW"	97.87	97.50	99.89	103.3	103.40
Q_Cond_LTC "kW"	58.16	57.95	59.37	61.42	61.44
Q_Eva_HTC "kW"	58.16	57.95	59.37	61.42	61.44
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167	35.167
First Law LTC Efficiency COP_LTC	1.529	1.544	1.453	1.340	1.338
First Law HTC Efficiency COP_ HTC	1.465	1.465	1.465	1.465	1.465
HTCExergy Destruction Ratio(EDR_HTC)	2.017	2.017	2.017	2.017	2.017
HTC Exergetic Efficiency	0.3314	0.3314	0.3314	0.3314	0.3314
HTC Exergy of Fuel "kW"	39.70	39.55	40.52	41.92	41.94
HTC Exergy of Product "kW"	13.16	13.11	13.43	13.89	13.90
W_comp_HTC"kW"	39.70	39.55	40.52	41.92	41.94
W_comp_LTC "kW"	23.0	22.78	24.20	26.25	26.27

Table-7 optimum system's thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP HFC+HFO blends in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature cycle (Q_Eva_LTC=35.167 kW, T_cond=50°C, T_ambient=25°C, T_Eva_HTC=-30°C, T_Eva_LTC=-90°C, Temperature overlapping=10, Compressor efficiency_HTC=80%, Compressor efficiency_LTC=80%,

		Compresse	or efficiency	/_LTC=00%,					
Effect of HFC +HFO Blends in VCRS	System	System	System	System	System	System	System	System	System
	1	6	10	14	17	22	27	32	37
HFC +HFO Blends in HTC	R513A	R454B	R449A	R454C	R515A	R448A	R450A	R452A	R452B
HFC +HFO Blends in LTC	R515A	R513A	R513A	R513A	R513A	R513A	R513A	R513A	R513A
First Law Cascaded Efficiency COP_ Cascade	0.540	0.5652	5219	0.4981	0.5610	0.5342	0.5524	0.4751	0.5642
Exergy Destruction Ratio(EDR_ Cascade)	1.949	1.818	2.052	2.197	1.839	1.981	1.883	2.352	1.823
Cascaded Exergetic Efficiency	0.3391	0.3549	0.3277	0.3128	0.3522	0.3355	0.3468	0.2943	0.3542
Exergy of Fuel "kW"	65.12	62.23	67.38	70.60	62.69	65.85	63.66	74.02	62.34
Exergy of Product "kW"	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08
HTC Mass flow Rate (Kg/sec)	0.6755	0.3557	0.5478	0.6133	0.6395	0.5174	0.6067	0.8286	0.3605
LTC Mass flow Rate (Kg/sec)	0.2541	0.2440	0.2440	0.2440	0.2440	0.2440	0.2440	0.2440	0.2440
Q_Cond_HTC "kW"	100.30	97.39	102.5	105.8	97.86	101.0	98.83	109.2	97.50
Q_Cond_LTC "kW"	58.16	57.95	57.95	57.95	57.95	57.95	57.95	57.95	57.95
Q_Eva_HTC "kW"	58.16	57.95	57.95	57.95	57.95	57.95	57.95	57.95	57.95
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167	35.167	35.167	35.167	35.167	35.167
First Law LTC Efficiency COP_LTC	1.529	1.544	1.544	1.544	1.544	1.544	1.544	1.544	1.544
First Law HTC Efficiency COP_ HTC	1.381	1.469	1.299	1.212	1.452	1.346	1.417	1.131	1.465
HTCExergy Destruction Ratio(EDR_HTC)	2.202	2.009	2.402	2.648	2.045	2.284	2.119	2.909	2.017
HTC Exergetic Efficiency	0.3123	0.3323	0.2939	0.2741	0.3285	0.3045	0.3206	0.2558	0.3314
HTC Exergy of Fuel "kW"	42.12	39.44	44.60	47.82	39.39	43.04	40.88	51.24	39.55
HTC Exergy of Product "kW"	13.16	13.11	13.11	13.11	13.11	13.11	13.11	13.11	13.11
W_comp_HTC"kW"	42.12	39.44	44.60	47.82	39.39	43.04	40.88	51.24	39.55
W_comp_LTC "kW"	23.0	22.78	22.78	22.78	22.78	22.78	22.78	22.78	22.78

2.8 Effect of HTC condenser temperature on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP HFC+HFO blends in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature cycle

Table-8 shows the variation of HTC condenser temperature on the thermodynamic performances of cascaded vapour compression refrigeration system using ecofriendly low GWP R513A refrigerant in the low temperature cycle(LTC) and ecofriendly low GWP R454B refrigerant in the high temperature cycle (HTC) and it was found that when condenser temperature is increasing, the system first law (energy) performance (COP_cascade) and exergetic performance is decreasing while exergy of fuel (i.e. total compressor work of both compressors is increasing. Similarly, the percentage improvement in the exergetic efficiency is increasing when condenser temperature is increasing from 45°C to 60°C.

Table 8: Effect of HTC condenser temperature on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP HFC+HFO blends in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature cycle (Q_Eva_Ltc=35.167 kW, T_cond=50°C, T_ambient=25°C, T_Eva_Htc=-30°C, T_Eva_Ltc=-90°C, Temperature overlapping=10, Compressor

efficiency_HTC=80%, Compressor efficiency_LTC=80%,												
HTC condenser temperature (°C)	60	55	50	45	40	35	30					
First Law Cascaded Efficiency COP_Cascade	0.4784	0.5224	0.5652	0.6076	0.6503	0.6936	0.7381					
Exergy Destruction Ratio(EDR_Cascade)	2.329	2.049	1.818	1.621	1.449	1.296	1.158					
Cascaded Exergetic Efficiency	0.3004	0.3280	0.3549	0.3815	0.4083	0.4355	0.4635					
Exergy of Fuel "kW"	73.51	67.32	62.23	57.88	54.08	50.7	47.65					
Exergy of Product "kW"	22.08	22.08	22.08	22.08	22.08	22.08	22.08					
%improvement in exergetic efficiency(%)	16.254	11.451	6.801	2.142	-2.507	-7.242	-12.08					
HTC Mass flow Rate (Kg/sec)	0.4150	0.3819	0.3557	0.3342	0.3160	0.3003	0.2866					
LTC Mass flow Rate (Kg/sec)	0.2440	0.2440	0.2440	0.2440	0.2440	0.2440	0.2440					
Q_Cond_HTC "kW"	108.7	102.5	97.39	93.05	89.25	85.87	82.81					
Q_Cond_LTC "kW"	57.95	57.95	57.95	57.95	57.95	57.95	57.95					
Q_Eva_HTC "kW"	57.95	57.95	57.95	57.95	57.95	57.95	57.95					
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167	35.167	35.167	35.167					
First Law LTC Efficiency COP_LTC	1.544	1.544	1.544	1.544	1.544	1.544	1.544					
First Law HTC Efficiency COP_ HTC	1.142	1.301	1.469	1.651	1.852	2.076	2.331					
HTCExergy Destruction Ratio(EDR_HTC)	2.87	2.398	2.009	1.677	1.388	1.13	0.8968					
HTC Exergetic Efficiency	0.2584	0.2943	0.3323	0.3735	0.4188	0.4695	0.5272					
HTC Exergy of Fuel "kW"	50.73	44.54	39.44	35.10	31.3	27.92	24.86					
HTC Exergy of Product "kW"	13.11	13.11	13.11	13.11	13.11	13.11	13.11					
W_comp_HTC"kW"	50.73	44.54	39.44	35.10	31.3	27.92	24.86					
W_comp_LTC "kW"	22.78	22.78	22.78	22.78	22.78	22.78	22.78					

2.9 Effect of temperature overlapping on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP HFC+HFO blends in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature cycle

Table-9 shows the variation of temperature overlapping (i.e.approach= LTC condenser temperature – HTC evaporator temperature) on the thermodynamic performances of cascaded vapour compression refrigeration system using ecofriendly low GWP R513A refrigerant in the low temperature cycle(LTC) and ecofriendly low GWP R454B refrigerant in the high temperature cycle (HTC) and it was found that when temperature overlapping is increasing, the system first law (energy) performance (COP_cascade) and exergetic performance is decreasing while exergy of fuel (i.e. total compressor work of both compressors is increasing. Similarly, the percentage improvement in the exergetic efficiency is decreasing when temperature overlapping is increasing from 0°C to 15°C.

Table 9: Effect of temperature overlapping on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP HFC+HFO blends in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature cycle (Q_Eva_Ltc=35.167 kW, T_cond=50°C, T_ambient=25°C, T_Eva_Htc=-30°C, T_Eva_Ltc=-90°C, Temperature overlapping=10, Compressor efficiency_Htc=80% Compressor efficiency_Ltc=80%

ejjiciency_Hic=6070, Compressor ejjiciency_Lic=6070,										
Temperature overlapping (°C)	0	3	4	5	6	8	9	10	12	15
First Law Cascaded Efficiency COP_ Cascade	0.6404	0.6169	0.6093	0.6017	0.5943	0.5795	0.5723	0.565	0.551	0.5304
Exergy Destruction Ratio(EDR_ Cascade)	1.487	1.581	1.614	1.647	1.680	1.748	1.783	1.818	1.89	2.003
Cascaded Exergetic Efficiency	0.4021	0.3874	0.3826	0.3778	0.3731	0.3639	0.3594	0.354	0.346	0.3330
Exergy of Fuel "kW"	54.91	57.0	57.72	58.44	59.18	60.68	61.45	62.23	66.30	63.82
Exergy of Product "kW"	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08

% improvement in exergetic efficiency(%)	21.0	16.58	15.137	13.692	12.28	9.5095	8.1553	6.801	4.123	0.210
HTC Mass flow Rate (Kg/sec)	0.3290	0.3366	0.3393	0.3419	0.3446	0.3501	0.3529	0.355	0.361	0.3706
LTC Mass flow Rate (Kg/sec)	0.2246	0.2301	0.2319	0.2339	0.2358	0.2398	0.2419	0.244	0.255	0.2484
Q_Cond_HTC "kW"	90.08	92.17	92.89	93.61	94.35	95.85	96.61	97.39	98.99	101.5
Q_Cond_LTC "kW"	53.60	54.84	55.27	55.7	56.04	57.03	57.49	57.95	58.9	60.37
Q_Eva_HTC "kW"	53.60	54.84	55.27	55.7	56.14	57.03	57.49	57.95	58.9	60.37
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167	35.167	35.167	35.167	35.16	35.16	35.167
First Law LTC Efficiency COP_LTC	1.908	1.787	1.750	1.713	1.677	1.609	1.576	1.544	1.482	1.395
First Law HTC Efficiency COP_ HTC	1.469	1.469	1.469	1.469	1.469	1.469	1.469	1.469	1.469	1.469
HTC Exergy Destruction Ratio(EDR_HTC)	2.009	2.009	2.009	2.009	2.009	2.009	2.009	2.009	2.009	2.009
HTC Exergetic Efficiency	0.3323	0.3323	0.3323	0.3323	0.3323	0.3323	0.3323	0.332	0.332	0.3323
HTC Exergy of Fuel "kW"	36.48	37.33	37.62	37.91	38.21	38.82	39.13	39.44	40.09	41.09
HTC Exergy of Product "kW"	12.12	12.41	12.50	12.60	12.90	12.12	12.12	13.11	13.32	13.66
W_comp_HTC"kW"	36.48	37.33	37.62	37.91	38.21	38.82	39.13	39.44	40.09	41.09
W_comp_LTC "kW"	18.43	19.67	20.10	20.53	20.97	21.86	22.32	22.78	23.73	25.21

2.10Effect of HTC evaporator temperature on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP HFC+HFO blends in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature cycle

Table-10(a) and Table-10(b) show the variation of HTC evaporator temperature on the thermodynamic performances of cascaded vapour compression refrigeration system using ecofriendly low GWP R513A refrigerant in the low temperature cycle(LTC) and ecofriendly low GWP R454B

refrigerant in the high temperature cycle (HTC) and it was found that when HTC evaporator temperature is increasing, the system first law (energy) performance (COP_cascade) and exergetic performance is increasing and reaching to the -24°C optimum value of HTC evaporator and then decreasing while exergy of fuel (i.e. total compressor work of both compressors is decreasing lowest electrical energy consumption till 24°C and then increasing. Similarly, the percentage improvement in the exergetic efficiency is decreasing when HTC evaporator temperature is increasing

Table 10 (a) : Effect of HTC evaporator temperature on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP HFC+HFO blends in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature cycle (Q_Eva_Ltc=35.167 kW, T_cond=50°C, T_ambient=25°C, T_Eva_Htc=-30°C, T_Eva_Ltc=-90°C, Temperature overlapping=10, Compressor efficiency Htc=80%.

Compressor efficiency_HTC=80%, Compressor efficiency_LTC=80%,											
HTC Evaporator temperature (°C)	-30	-28	-27	-26	-25	-24	-23	-22	-21	-20	
First Law Cascaded Efficiency COP_ Cascade	0.5652	0.566	0.566	0.566	0.567	0.567	0.567	0.566	0.5664	0.5659	
Exergy Destruction Ratio(EDR_ Cascade)	1.818	1.813	1.811	1.809	1.809	1.809	1.809	1.810	1.812	1.809	
Cascaded Exergetic Efficiency	0.3549	0.355	0.355	0.356	0.356	0.356	0.356	0.355	0.3555	0.3554	
Exergy of Fuel "kW"	62.23	62.10	62.06	62.03	62.02	62.03	62.03	62.05	62.09	62.14	
Exergy of Product "kW"	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08	
%improvement in exergetic efficiency(%)	6.801	7.173	7.363	7.553	7.716	7.942	8.141	8.374	8.55	8.851	
HTC Mass flow Rate (Kg/sec)	0.3557	0.359	0.361	0.363	0.365	0.367	0.369	0.371	0.3735	0.3758	
LTC Mass flow Rate (Kg/sec)	0.2440	0.248	0.250	0.252	0.255	0.257	0.260	0.262	0.2651	0.2677	
Q_Cond_HTC "kW"	97.39	97.27	97.23	97.20	97.19	97.18	97.19	97.22	97.26	97.31	
Q_Cond_LTC "kW"	57.95	68.90	59.38	59.87	60.37	60.88	61.40	61.93	62.46	63.0	
Q_Eva_HTC "kW"	57.95	60.90	59.38	59.87	60.37	60.88	61.40	61.93	62.46	63.0	
Q_Eva_LTC "kW"	35.167	35.16	35.16	35.16	35.16	35.16	35.16	35.16	35.167	35.167	
First Law LTC Efficiency COP_LTC	1.544	1.482	1.452	1.423	1.395	1.368	1.341	1.314	1.288	1.263	
First Law HTC Efficiency COP_ HTC	1.469	1.535	1.569	1.604	1.640	1.677	1.715	1.755	1.795	1.837	
HTCExergy Destruction Ratio(EDR_HTC)	2.009	2.014	2.017	2.021	2.026	2.032	2.038	2.045	2.054	2.063	
HTC Exergetic Efficiency	0.3323	0.331	0.331	0.331	0.330	0.329	0.329	0.328	0.3275	0.3265	
HTC Exergy of Fuel "kW"	39.44	38.37	37.85	37.33	36.81	36.30	35.79	35.29	34.79	34.30	
HTC Exergy of Product "kW"	13.11	12.73	12.54	12.36	12.16	11.97	11.78	11.59	11.39	11.20	
W_comp_HTC"kW"	39.44	38.37	37.85	37.33	36.81	36.30	35.79	35.29	34.79	34.30	
W_comp_LTC "kW"	22.78	23.73	24.21	27.84	25.21	25.72	26.23	26.76	27.29	27.84	

Table 10 (b): Effect of HTC evaporator temperature on thermodynamic performances of vapour compression refrigeration system using ecofriendly low GWP HFC+HFO blends in higher temperature cycle using ecofriendly HFC+HFO blends in low GWP refrigerant in low temperature cycle (Q_Eva_Ltrc=35.167 kW, T_cond=50°C, T_ambient=25°C, T_Eva_Ltrc=-30°C, T_Eva_Ltrc=-90°C, Temperature overlapping=10, Compressor efficiency user=80% Compressor efficiency user=80%

Compressor efficiency_HTC=80%, Compressor efficiency_LTC=80%,											
HTC Evaporator temperature (°C)	-30	-26	-25	-24	-20	-19	-18	-17	-16	-15	-10
First Law Cascaded COP_ Cascade	0.5652	0.566	0.567	0.567	0.565	0.565	0.564	0.563	0.562	0.562	0.554
Exergy Destruction Ratio(EDR_ Cascade)	1.818	1.809	1.809	1.809	1.809	1.817	1.821	1.825	1.830	1.836	1.874
Cascaded Exergetic Efficiency	0.3549	0.356	0.356	0.356	0.355	0.355	0.354	0.354	0.353	0.3527	0.347
Exergy of Fuel "kW"	62.23	62.03	62.02	62.03	62.14	62.21	62.28	62.38	62.49	62.61	63.47
Exergy of Product "kW"	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08
%improvement in exergetic efficiency(%)	6.801	7.553	7.716	7.942	8.851	9.097	9.346	9.631	9.922	10.22	12.15
HTC Mass flow Rate (Kg/sec)	0.3557	0.363	0.365	0.367	0.375	0.378	0.375	0.375	0.375	0.3877	0.401
LTC Mass flow Rate (Kg/sec)	0.2440	0.252	0.255	0.257	0.267	0.270	0.267	0.267	0.267	0.2816	0.297
Q_Cond_HTC "kW"	97.39	97.20	97.19	97.18	97.31	97.37	97.45	97.55	97.65	97.65	98.64
Q_Cond_LTC "kW"	57.95	59.87	60.37	60.88	63.0	63.56	64.12	64.70	65.28	65.88	63.47
Q_Eva_HTC "kW"	57.95	59.87	60.37	60.88	63.0	63.56	64.12	64.70	65.28	65.88	63.47
Q_Eva_LTC "kW"	35.167	35.16	35.16	35.16	35.16	35.16	35.16	35.16	35.16	35.167	35.16
First Law LTC Efficiency COP_LTC	1.544	1.423	1.395	1.368	1.263	1.239	1.215	1.191	1.168	1.145	1.038
First Law HTC Efficiency COP_ HTC	1.469	1.604	1.64	1.677	1.837	1.880	1.924	1.969	2.016	2.065	2.333
HTCExergy Destruction Ratio(EDR_HTC)	2.009	2.021	2.026	2.032	2.063	2.073	2.084	2.097	2.110	2.125	2.223
HTC Exergetic Efficiency	0.3323	0.331	0.330	0.329	0.326	0.325	0.324	0.322	0.321	0.320	0.310
HTC Exergy of Fuel "kW"	39.44	37.33	36.81	36.30	34.30	33.81	33.33	32.85	32.37	31.90	29.60
HTC Exergy of Product "kW"	13.11	12.36	12.16	11.97	11.20	11.0	10.81	10.61	10.41	10.21	9.182
W_comp_HTC"'kW"	39.44	37.33	36.81	36.30	34.30	33.81	33.33	32.85	32.37	31.90	29.60
W_comp_LTC "kW"	22.78	24.74	25.21	25.72	27.84	28.39	28.95	29.53	30.11	30.71	33.87

2.11 Effect of LTC evaporator temperature on thermodynamic performances of vapour compression refrigeration system using ecofriendly R454B of low GWP HFC+HFO blends in higher temperature cycle using ecofriendly of R513A (using HFC+HFO blends) in low GWP refrigerant in low temperature cycle

Table-11(a) and Table-11(b) show the variation of LTC evaporator temperature on the thermodynamic performances of cascaded vapour compression refrigeration system using ecofriendly low GWP R513A refrigerant in the low temperature cycle(LTC) and ecofriendly low GWP R454B

refrigerant in the low temperature cycle (LTC) and it was found that when LTC evaporator temperature is increasing, the system first law (energy) performance (COP_cascade) and exergetic performance is increasing and reaching to the -77°C to -80°c optimum value of LTC evaporator and then decreasing while exergy of fuel (i.e. total compressor work of both compressors is first decreasing and reaching to a optimum value and then increasing Similarly the percentage improvement in the exergetic efficiency is increasing when HTC evaporator temperature is increasing and reaching to a maximum (optimum) and then decreasing.

Table 11(a): Effect of LTC evaporator temperature on thermodynamic performances of vapour compression refrigeration system using ecofriendly R454B of low GWP HFC+HFO blends in higher temperature cycle using ecofriendly of R513A (using HFC+HFO blends) in low GWP refrigerant in low temperature cycle ($Q_Eva_{LTC}=35.167$ kW, $T_{cond}=50^{\circ}$ C, $T_{ambient}=25^{\circ}$ C, $T_{Eva_{a}HTC}=-30^{\circ}$ C, $T_{Eva_{a}LTC}=-90^{\circ}$ C, Tomperature cycle ($Q_{a}Compression efficiency, use = 80\%$ Compression efficiency, use = 80\%

Temperature overlapping=10, Compressor efficiency_Htc=80%, Compressor efficiency_Ltc=80%,												
LTC Evaporator temperature (°C)	-81	-80	-79	-78	-77	-76	-75					
First Law Cascaded Efficiency COP_ Cascade	0.6487	0.6585	0.6684	0.6783	0.6884	0.6986	0.7089					
Exergy Destruction Ratio(EDR_ Cascade)	1.794	1.794	1.793	1.793	1.793	1.794	1.795					
Cascaded Exergetic Efficiency	0.3579	0.3580	0.3580	0.3580	0.3580	0.3579	0.3577					
Exergy of Fuel "kW"	54.21	53.40	52.62	51.84	51.08	50.34	49.61					
Exergy of Product "kW"	19.40	19.12	18.84	18.56	18.29	18.02	17.75					
%improvement in exergetic efficiency(%)	7.704	7.734	7.734	7.734	7.734	7.704	7.6437					
HTC Mass flow Rate (Kg/sec)	0.3264	0.3285	0.3150	0.3118	0.3150	0.3123	0.3096					
LTC Mass flow Rate (Kg/sec)	0.2349	0.2339	0.2301	0.2320	0.2310	0.2301	0.2291					
Q_Cond_HTC "kW"	8938	88.57	86.25	87.01	86.25	85.51	84.78					
Q_Cond_LTC "kW"	53.18	52.70	51.32	51.77	51.32	50.88	50.44					
Q_Eva_HTC "kW"	53.18	52.70	51.32	51.77	51.32	50.88	50.44					
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167	35.167	35.167	35.167					
First Law LTC Efficiency COP_LTC	1.952	2.006	2.177	2.118	2.177	2.238	2.302					
First Law HTC Efficiency COP_ HTC	1.469	1.469	1.469	1.469	1.469	1.469	1.469					
HTCExergy Destruction Ratio(EDR_HTC)	2.009	2.009	2.009	2.009	2.009	2.009	2.009					

HTC Exergetic Efficiency	0.3323	0.3323	0.3323	0.3323	0.3323	0.3323	0.3323
HTC Exergy of Fuel "kW"	36.20	35.87	34.93	35.24	34.93	34.63	34.33
HTC Exergy of Product "kW"	12.03	11.92	11.61	11.71	11.61	11.51	11.41
W_comp_HTC"kW"	36.20	37.57	34.93	35.24	34.93	34.63	35.87
W_comp_LTC "kW"	18.01	17.59	16.15	16.60	15.61	15.71	0.7089

Table 11(b): Effect of LTC evaporator temperature on thermodynamic performances of vapour compression refrigeration system using ecofriendly R454B of low GWP HFC+HFO blends in higher temperature cycle using ecofriendly of R513A (using HFC+HFO blends) in low GWP refrigerant in low temperature cycle ($Q_{Eva_LTC}=35.167$ kW, $T_{_cond}=50^{\circ}$ C, $T_{_ambient}=25^{\circ}$ C, $T_{_Eva_HTC}=-30^{\circ}$ C, $T_{_Eva_LTC}=-90^{\circ}$ C, $T_{_mperature}$ overlapping=10. Compressor efficiency using efficiency using

<i>Temperature overlapping=10, Compressor efficiency_httc=80%, Compressor efficiency_lttc=80%,</i>										
LTC Evaporator temperature (°C)	-95	-90	-85	-80	-75	-70	-65	-60	-55	-50
First Law Cascaded Eff COP_ Cascade	0.5220	0.5652	0.6106	0.6585	0.7089	0.7619	0.8176	0.8762	0.9379	1.003
Exergy Destruction Ratio(EDR_ Cascade)	1.844	1.818	1.801	1.794	1.795	1.807	1.829	1.862	1.907	1.967
Cascaded Exergetic Efficiency	0.3516	0.3549	0.3570	0.3580	0.3577	0.3563	0.3535	0.3494	0.3439	0.3370
Exergy of Fuel "kW"	67.37	62.23	57.59	53.40	49.61	46.16	43.01	40.13	35.50	35.07
Exergy of Product "kW"	23.69	22.08	20.56	19.12	17.75	16.45	15.21	14.02	12.90	11.82
% improvement in exergetic eff (%)	5.808	6.801	7.433	7.734	7.6437	7.22	6.379	5.146	3.4908	1.414
HTC Mass flow Rate (Kg/sec)	0.3745	0.3557	0.3388	0.3285	0.3096	0.2970	0.2856	0.2750	0.2654	0.2565
LTC Mass flow Rate (Kg/sec)	0.2493	0.2440	0.2389	0.2339	0.2291	0.2245	0.2220	0.2156	0.2114	0.2074
Q_Cond_HTC "kW"	102.5	97.39	92.76	88.57	84.78	81.33	78.18	75.30	72.66	70.24
Q_Cond_LTC "kW"	61.01	57.95	57.59	52.70	50.44	48.39	46.52	44.80	43.23	41.79
Q_Eva_HTC "kW"	61.01	57.95	57.59	52.70	50.44	48.39	46.52	44.80	43.23	41.79
Q_Eva_LTC "kW"	35.167	35.167	35.167	35.167	35.167	35.167	35.167	35.167	35.167	35.167
First Law LTC Efficiency COP_LTC	1.361	1.544	1.756	2.006	2.302	2.660	3.098	3.649	4.359	5.308
First Law HTC Efficiency COP_ HTC	1.469	1.469	1.469	1.469	1.469	1.469	1.469	1.469	1.469	1.469
HTCExergy Destruction Ratio(EDR_HTC)	2.009	2.009	2.009	2.009	2.009	2.009	2.009	2.009	2.009	2.009
HTC Exergetic Efficiency	0.3323	0.3323	0.3323	0.3323	0.3323	0.3323	0.3323	0.3323	0.3323	0.3323
HTC Exergy of Fuel "kW"	41.63	39.44	37.57	35.87	34.33	32.94	31.66	30.50	29.43	28.45
HTC Exergy of Product "kW"	13.80	13.11	12.48	11.92	11.41	10.95	10.52	10.13	9.78	6.625
W_comp_HTC"kW"	41.63	41.63	39.44	37.57	35.87	34.33	32.94	31.66	30.50	29.43
W_comp_LTC "kW"	25.85	22.78	20.56	17.59	15.28	13.22	11.35	9.638	8.068	6.625

3. Conclusions

Following Conclusions were drawn from present investigation

- The first law efficiency (COP) of vapour compression refrigeration systems using eight HFC +HFO Blends, at dead state temperature of 313K (40°C) the R515A gives highest first law efficiency(COP) and exergetic efficiency with lowest exergy destruction ratio
- By increasing the condenser temperature, the first law efficiency (COP) and exergetic efficiency decreases while exergy destruction ratio(EDR) of vapour compression refrigeration systems is increases. Similarly, compressor work in form of exergy of input and heat rejected by the condenser increased. The exergy destruction in compressor and evaporator decreased while exergy destruction in condenser and expansion (throttle) valve and mass flow rate increased.
- By increasing dead state temperature, the second law efficiency and exergetic efficiency is increased in the vapour compression refrigeration systems while first law efficiency (COP). does not affect
- By increasing the evaporator temperature of vapour compression refrigeration systems, the first law efficiency (COP) and exergy destruction ratio(EDR) increased while the exergetic efficiency is decreased.

- The compressor work in form of exergy of input and heat rejected by the condenser is decreases, when evaporator temperature is increases in the the vapour compression refrigeration systems.
- The exergy destruction in compressor and evaporator increased by increasing evaporator temperature in the vapour compression refrigeration systems
- The exergy destruction in condenser and expansion (throttle) valve (both) and mass flow rate is decreased by increasing evaporator temperature in the vapour compression refrigeration systems
- By increasing dead state temperature, the second law efficiency and exergetic efficiency in the vapour compression refrigeration systems is increased while first law efficiency (COP) remains same (i.e. does not affect)
- The first law efficiency (COP_{Cascade}) of cascaded vapour compression refrigeration systems using HFC +HFO Blends in high temperature cycle and HFC +HFO Blends in low temperature cycle and it was found that cascaded vapour compression refrigeration systems using R454B in high temperature cycle and R513A in low temperature cycle gives higher first law efficiency and exergetic efficiency lower exergy destruction ratio
- The thermodynamic performances using R452B and R515 in high temperature cycle and R513A in low

temperature cycle gives slightly lower thermodynamic performances than using R454B in higher temperature cycle and R513A in the low temperature cycle

• The cascaded vapour compression refrigeration systems using R454B in high temperature cycle and R454C in low temperature cycle gives lower first law efficiency (COP_Cascade) and exergetic efficiency and higher exergy destruction ratio.

References

- R. Cabello, E. Torrella, J. Navarro-Esbri, Experimental evaluation of a vapour compression plant performance using R134a, RR407C and R22 as working fluids, Applied Thermal Engineering 24 (2004) 1905-1917.
- [2] B.O.Bolaji, M.A. Akintunde, T.O. Falade, Comparative analysis of performance of three ozone-friends HFC refrigerants in a vapour compression refrigerator, Journal of Sustainable Energy and Environment 2 (2011) 61-64.

- [3] B.O.Bolaji, Selection of environment-friendly refrigerants and the current alternatives in vapour compression refrigeration systems, Journal of Science and Management, Vol 1, No. 1 (2011) 22-26.
- [4] James M. Calm, "Emissions and environmental impacts from airconditioning and refrigeration systems" International Journal of Refrigeration 25, pp. 293–305, 2002.
- [5] Leonardo Arrieta Mondragon, et.al. [2018] Computer-Aided Simulation of the Energetic and Exergetic Efficiency of a Two Stage Cascade Cooling Cycle, International Journal of Applied Engineering Research, ISSN: 0973-4562, Volume 13, NO. 13 (2018), pp.11123-11128
- [6] J. Alberto Dopazo, Jose Fernandez-Seara-Theoretical analysis of a CO2-NH3 Cascade refrigeration system for cooling applications at low temperature, applied thermal engineering 29 (2009) 1577-1583.
- [7] R.S.Mishra, Thermal modeling of three stage vapour compression cascade refrigeration system using entropy generation principle for reducing global warming and ozone depletion using ecofriendly refrigerants for semen preservation, International Journal of Engineering and Innovation, vol.1, issue 2 (2017), 22-28.

Cite this article as: R.S. Mishra, Exergy analysis of simple & cascade vapour compression refrigeration systems using HFO+HFC blends low temperature applications, International journal of research in engineering and innovation (IJREI), vol 5, issue 6 (2021), 428-445. <u>https://doi.org/10.36037/IJREI.2021.5613</u>.