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1. Introduction 

 

Automotive, aerospace, electronics, transportation, and other 

industries extensively employ light metal alloys like 

aluminium and magnesium alloys [1–5]. This is caused by low 

density, excellent electromagnetic shielding, high specific 

strength, high damping, and good hot formability [2-4,6,7]. On 

the other hand, these alloys may be recycled and are 

inexpensive to cast [1,2,7,8]. Due to their strong resistance to 

carbon dioxide, appropriate thermal conductivity, and low 

inclination to absorb neutrons, magnesium alloys are also 

utilized in the nuclear industry [2]. Additionally, due to their 

excellent corrosive properties, aluminum alloys are used in 

marine, aerospace and automobile industries [9–14]. The 

ductility and formability of magnesium alloys are 

unsatisfactory at room temperature, leading to early failure 

under challenging stress conditions. The hexagonal close-

packed (HCP) crystal lattice's poor symmetry, high basal 

roughness, and restriction on the number of active slip systems 

all contribute to this [2,15–17]. Due to these factors, there is 

insufficient strength, severe fatigue, and little creep resistance 

[2]. FSW's fundamental idea is incredibly straightforward. 

According to the schematic in Fig. 1a unique rotating tool 

made of a shoulder and pin is first placed into the margins of 
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two sheets that need to be welded before moving along the 

joint line. The material flows intricately around the tool during 

FSW, from the advancing side (AS) to the retreating side (RS). 

The AS signifies the side when the rotating and welding 

directions are the same, and the RS marks the side where they 

are opposite. A revolving tool produces heat, transforming the 

material nearby from a hard solid state into a soft "plastic-like" 

state. Due to its lightweight nature, appealing look, 

fabricability, and corrosion resistance, aluminum became the 

choice for many applications [18]. In its purest form, 

aluminum is weak. Its mechanical qualities are enhanced by 

alloying it with iron, silicon, manganese, and magnesium to 

create non-heat-treatable alloys. Pure alloying of aluminum 

with copper, magnesium silicate, and zinc results in the 

development of heat-treatable high-strength aluminum alloys 

[19]. Depending on their mechanical and physical qualities, 

these alloys are employed in various disciplines, such as 

airframes, engines, missile bodies, fuel cells, and satellite 

components. Arc welding is one of the most frequently used 

modern industrial methods by heating metal components to 

their melting point and joining them together. Aluminum 

alloys that cannot be fused using the traditional arc welding 

process are created by factors such as the formation of 

aluminum oxide in the molten stage, hydrogen solubility, 

thermal expansion, and shrinkage during solidification [20]. 

 

 
Figure 1: Schematic diagram of friction stir welding 

 

1. Modification/enhancement of microstructure and 

mechanical properties of light metal alloys  

 

A fine and equiaxed recrystallized grain structure distinguishes 

the center-located NZ. For instance, the 6061Al-T651 alloy's 

massive, elongated, pancake-shaped grains have been refined 

into tiny recrystallized grains (Fig. 2) [21]. The NZ material is 

thought to have undergone SPD at a high strain rate. 

Depending on the material, tool design, and operating 

conditions, cumulative strain and peak temperatures in this 

location might vary from 0.8 to 0.95 Tm [22, 23]. In the NZ, 

DRX developed refined and equiaxed grains after severe 

plastic deformation and high-temperature exposure. 

 

 

 
Figure 2: (a) EBSD diagram of base metal AA6061, (b) Nugget 

Zone 

 

 
Figure 3: TEM image of friction stir welded joint of AA7075, (a) 

Subgrain boundaries, (b) Uniform and tiny disseminated 

precipitates, (c) Grain structure, (d) 2nd phase particles at NZ [24]. 

 

 
Figure 42. Separation bands on transverse cross sections of (a) FSW 

2024Al-T351 alloy joint produced at a TRS of 800 rpm and a 

welding speed of 200 mm/min, magnified (b) OM and (c) SEM 

images of position B in (a), and (d) magnified image of arrow zone 

in (c) [28]. 

 

Characteristic microstructures in the NZ of the FSW joints, 

including onion-ring structures, segregation bands, zigzag 

lines, and kissing bonds, are generated and are related to the 

particular and intricate deformation mode in FSW/FSP. The 

mechanical characteristics and fracture behavior of the FSW 

joints of aluminum alloys are often significantly influenced by 
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these distinctive microstructures, which draw a lot of attention 

from researchers. The NZ was distinguished by a fine and 

equiaxed recrystallized grain structure after FSW [24, 25]. 

Examinations using transmission electron microscopy (TEM) 

revealed no fine precipitates (Fig. 2) [24]. This suggests that 

FSW caused the fine ή phase to dissolve. Mahoney et al. 

reported similar outcomes as well [26]. Despite total dissolving 

occurring in the NZ, according to Dumont et al. [27], it did 

recover some hardness after cooling and subsequent natural 

age. GP zones formed and expanded in areas where 

supersaturation was sufficient during this time [27]. In the 

shoulder-driven zone (SDZ) of the NZ in FSW joints of 

precipitation-strengthened aluminum alloys, linear segregation 

bands made up of second-phase particles were occasionally 

seen in addition to the onion-ring structure. As indicated by the 

black lines in Fig. 4a [28], such linear segregation bands 

displayed distinct distribution characteristics from the onion-

ring structure. Continuous linear segregation bands were 

readily discernible at higher magnifications in both optical 

microscopy (OM) and SEM images (Fig. 4 and 4c) [28]. 

Additionally, an SEM picture showed that practically all of the 

second-phase particles in the matrix had been dissolved (Fig. 

4c). Secondary phase particles separated at the grain borders, 

as seen by the magnified picture of the arrow zone in Fig. 4c. 

The linear microstructure in Figure 42d was made up of a vast 

number of secondary phase particles at grain boundaries [29].

Table 1: Research summary of FSW/FSP of light metal alloys 

S.No Materials Authors Conclusions References 

1 ZE41A & AA6061 Champagne III et (2016)al. Hybrid joint obtained using FSW and cold spray. [30] 

2 AZ31 & AA1100 Azizieh et al. (2016) 
Maximum tensile strength of 122 MPa was achieved of 

base metal. 
[31] 

3 AZ31 & AA6013 Zhao et al. (2015) 
Maximum tensile strength obtained 152.3 MPa through 

UFSW. 
[32] 

4 AZ31B-O & 6061-T6 Fu et al. (2015) 
Maximum tensile strength achieved 70% of base metal 

(Mg). 
[33] 

5 AZ31 & AA6061 Regev et al. (2014) 
Consideration of peak temperature plasticity over creep 

analysis. 
[34] 

6 AZ31-O  & AA6061-T6 Masoudian et al. (2014) 
Maximum tensile strength of 76% and 60% of Mg and 

respectively was achieved.Al 
[35] 

7 AA2024  & AA6061 Sadeesh (2014) 
The tensile strength of 194 Mpa  and 209 Mpa  were 

attained. 
[36] 

8 AZ31&AA6061-T6 Lee et al. (2014) Observation of plane orientation and fine grains in SZ. [37] 

9 Mg & AA6061 Liang et al. (2013) 
Influence of tool rotatory speed and tool offset on  weld 

properties. 
[38] 

10 Pure Mg & AA6063 Pourahmad et al. (2013) 
Material flow analysis and IMCs development by steel 

shots. 
[39] 

11 AZ31B & 6063 Venkateswaran (2012)and 
Showing relationship between weld interface and 

tensile strength. 
[40] 

12 AZ31C-O  & 5083 Mofid et al. (2012) 
Water cooling effect on  maximum temperature and 

IMCs formation. 
[41] 

13 AZ31 & AA5754 Simoncini et al. (2012) Influence of FSW constraints and tool shape. [42] 

14 AZ31B & AA6061 Malarvizhi (2012) and 
Influence of tool shoulder diameter (heat generation) 

Mg–Al weldment quality.on 
[43] 

15 AZ31 & AA6061-T6 Chang et al. (2011) 
Improved the tensile strength to 66% of base Mg by 

Hybrid laser-FSW. 
[44] 

16 AZ31B-H24 & 6061-T6 Firouzdor and (2010b)Kou Base  metals Positioning affects the IMCs formation. [45] 

17 AZ31B-H24 & 6061-T6 Firouzdor and (2010a)Kou Formation constitutional liquation was perceived. [46] 

18 AZ31 & A5052 Yan et al. (2010) 
Maximum hardness was obtained twice the base 

metals. 
[47] 

19 AZ31B & A5083 Yamamoto et al. (2009) 
Tensile strength of 115 MPa and IMCs Al12 Mg17  & 

Al3 Mg2 was achieved. 
[48] 

20 AZ31 & AA6061 Firouzdor and (2009)Kou 
Material positioning directly affects the heat input 

during FSW. 
[49] 

21 AZ31B-H24 & 2024-T3 Liu et al. (2009) 
Showing galvanic corrosion due to the Al-Mg galvanic 

couples growth 
[50] 

22 AZ31 & AA6040 Kostka et al. (2009) Observed 1  m thick IMC of fine-grained Al12 Mg17. [51] 

23 AZ31B-O & A5052P-O Shigematsu et al. (2009) 
Maximum tensile strength of 143 MPa was achieved at 

1400 rpm. 
[52] 

24 AZ31B-O & A5052P-O Kwon et al. (2008) 
The tensile strength of 132 MPa was achieved at 1000 

rpm. 
[53] 

25 AZ31B &A5052-H Morishige et al. (2008) 
The SZ hardness was lower than the laser 

welding fusion zone. 
[54] 



  

Mohd Sajid et al., / International journal of research in engineering and innovation (IJREI), vol 7, issue 1 (2023), 15-22 

 

  

 

 

18 

26 2024-T3 & AZ31 Khodir et al. (2007) 
Variation in hardness value over SZ due to IMCs 

formation. 
[55] 

27 AZ31 & Al6040 Zettler et al. (2006) Attained 80% weld efficiency of base material (AZ31). [56] 

28 AZ31 & 1060 Yan et al. (2005) 
IMCs like  Al12 Mg17  and Al3 Mg2  cause the 

cracking during FSW. 
[57] 

29 
6061-T6- AZ91D & 

AZ31B-H24 
Somasekharan et al. (2004) 

Lamellar shear bands were seen in either side of Al or 

Mg. 
[58] 

30 AZ31 & A1050  Sato et al. (2004) 

The IMC Al12 Mg17 was formed by constitutional 

liquation FSW. Formation of a very thin IMC layer, 

results in virtually no  ductility. 

[59] 

31 AA6082 & AA8011 Husain Mehdi et al. (2022) 

FSP was applied on single and double V groove TIG 

welded joint and observed excellent mechanical 

properties compared to TIG and FSW joints. 

[60] 

32 AZ31 & A1050 McLean et al. (2003) 
Intermixing two phases at the intermediate layer. The 

formation of IMCs in SZ is restricted. 
[61] 

33 AZ31 & A1050 Hirano et al. (2003) 
Preliminary study and defect-free joining by FSW of 

Al–Mg alloy. 
[62] 

34 Al–Zn–Mg–Cu alloy  Park et al. (2002) 

In this study, the model accurately forecasts the 

maximum welding temperature distributions over the 

studied energy range. 

[63] 

35 
AA6061-T6 Aluminum  

alloy 
C. Hamilton et al [2009] 

A novel slip factor based on the weld's energy per unit 

length was used to develop a thermal model for friction 

stir welding. Over a broad range of energy levels, the 

thermal model correctly predicts the maximum welding 

temperature. 

[64] 

36 

A 3D FE model, with 

general validity  for 

different joint was used to 

simulate  

C. Hamilton et al [2008] 

In friction stir welding operations, a new numerical 

method is studied to predict residual stress 

distributions. 

[65] 

37 
Magnesium Alloy Mg-Y-

Re 
G. Buffa et al [2011] 

A friction stir processed Mg-Y-RE alloy's corrosion 

behavior was investigated with grain refinement and 

heat treatment. With electrochemical testing and 

continual immersion testing, many patterns between 

microstructural conditions and corrosion behavior were 

found. 

[66] 

38 Al Alloy 1100 G.R. Argade at al [2012] 

AA1100 which had been accumulatively roll-bonded 

(ARBed) underwent friction stir welding (FSW). FSW 

caused the fine granules of the SZ to reproduce and the 

ultrafine grains of the ARBed material nearby to 

somewhat increase. 

[67] 

39 AA7075 and AA6061 Mehdi et al. [2022] 
Optimization technique was used to predict the 

mechanical properties of TIG+FSP welded joint. 
[68] 

40 Pure Titanium L. Fratini et al [2010] 

It investigated how the microstructure of commercial-

quality titanium changed during FSW. The material 

flow was discovered to be caused mainly by prism slip 

and to be close to simple-shear deformation. The 

development of grain structure has been proven to be a 

multi-stage, complicated process. 

[69] 

41 AZ31 Magnesium Alloy S.Mironov et al [2009] 

On the side that is receding, there are more signs of 

stress. Grain expansion is shown with an increase in the 

processing variables that encourage heat generation. 

For this hot-rolled BM, FSW reduced the tensile 

mechanical characteristics. 

[70] 

42 AA7449 aluminium alloy.  L.Commin et al [2009] 

To predict the precipitate dissemination in 7xxx alloys 

during FSP, a numerical, analytical model built on the 

Kampmann and Wagner numerical (KWN) model. 

[71] 

43  6061Al–T651  N.Kamp et al [2006] 

The TS is crucial in affecting the welds' tensile 

characteristics and fracture mechanism under the 

welding conditions. FSW 6061Al-T651 joints welded 

at 400 mm/min had greater strength with a 45-shear 

fracture, whereas samples welded at 100 mm/min 

showed lower UTS with almost vertical fractures. 

[72] 
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44 

Aluminium matrix 

composites 

 (AMCs) 

Omar.S.Salih [2015] 

The quantity of heat generated and the strength of FSW 

joints are significantly influenced by welding 

parameters such as tool rotation, speed, transverse 

speed, and axial force. A microstructural analysis 

revealed that the improper flow of plasticized metal 

caused the creation of the tunnel defect. 

[73] 

45 

Al-4Mg-1Zr alloy with 

grain  

size of 0.7 µm 

Z.Y. Ma [2010] 

Low temperature and high strain rate super plasticity of 

greater than 1200% work was observed at 10-2 to -1x10-

1 s-1. 

[74] 

46 Al-Si alloy A356 Z.Y.Ma et al [2003] 

With higher tool rotation rates, FSP A356's strength 

improved. The tool's maximum strength for the 

conventional pin was seen at 900 rpm. 

[75] 

47 
AA6082 and AA8011 

AA5083 and AA8011 

Mabuwa et al. [2022] 

Hashmi et al. [2022] 
Salah et al. [2022] 

Si particle size, aspect ratio, and dispersion were 

unaffected by overlapping FSP. The FSP-broken Si 

particles were evenly distributed across the multi-pass 

FSP-processed zones. 

[76-78] 

48 Al-Mg-Sc alloy  Nilseh Kumar et al [2012] 

Depending on the alloy's processing and initial 

thermos-mechanical state, the grain size ranged from 

0.89 to 0.39 m. With an increase in the Zener-Holloman 

parameter, the grain size was reported to be reduced. 

[79] 

49 A356 Alloy S.R Sharma [2004] 

Significant refining, microstructure homogeneity, and 

porosity reduction were linked to an improvement in 

fatigue life. The aluminum matrix underwent a 

considerable breakage and homogeneous dispersion of 

Si particles as a result of FSP, and porosity was also 

eliminated. 

[80] 

50 
AA6082 

AA5083 and AA6061 

H. Mehdi [2022] 

P. Rani et al [2022] 

Nanoparticles ZrB2 was used the reinforcement 

particles to enhance the mechanical and microstructure 

of AA6082. The processed region revealed the 

maximum tensile strength compared to the base metal. 

[81-83] 

51 Cast Al-Alloy of F357  S. Jana et al [2007] 

Si particles were not polished further than a particular 

point by the numerous passes. The multi-pass run of the 

second setup shows that FSPed material can limit the 

amount of AGG. 

[84] 

52 Al-SiC Composite R.S Mishra et al [2003] 

When the desired depth (2.28mm) is too great, the tool's 
shoulder pushes all of the pre-placed SiC particles away, and 

little to no composite surface forms. SiC particles could not be 

mixed with Al-alloy because the target depth (1.78mm) was 
too tiny. Particles of SiC were successfully incorporated into 

the aluminum matrix at the target depth of 2.03 mm. 

[85] 

53 
AA2024 and AA7050 
 

A.N. Salah et al. [2021] 
 

The maximum tensile strength was achieved at high TRS of 
dissimilar aluminum alloys AA2024 and AA7050. The brittle 

intermetallic compound was generated at low TRS and low 

TS, disseminated at high TRS and observed excellent 
mechanical properties of the welded joints.  

[86] 

54 cast A356 aluminum Z.Y.Ma et al [2006] 

Higher tool rotation rates produce a more homogenous 

microstructure. Si particles are distributed differently 

throughout the FSP zone, with varying sizes and 

volume fractions, indicating uneven material flow. 

[87] 

55 Al–7Si–0.6 Mg alloy S.Jana, et al [2007] 

When specimens were tested at the same stress level 

and with a stress ratio of R=0, FSP increased the fatigue 

life of a cast Al-7Si-0.6 Mg alloy by 15. 

[88] 

56 Aluminum alloy 7050-T65 J-Q-Su et al [2002] 

During friction stir welding, the base metal's original 

grain structure is removed and replaced with a fragile 

equiaxed grain structure in the dynamic re-crystallized 

zone. The strengthening precipitates have coarsened 

substantially compared to the parent material 

microstructure (DXZ). 

[89] 

57 

Commercial superplastic 

7475 Al alloy sheets 

 
Indrajit Charit et al [2002] 

Weld HAZ has a stable microstructure that nonetheless 

exhibits superplastic characteristics.  Due to the 

increased flow stress at 783 K compared to source 

metal (16-18 MPa versus 2-9 MPa), the high-strength 

weld nugget is unlikely to deform during superplastic 

forming. 

[90] 
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