

International Journal of Research in Engineering and Innovation (IJREI)

journal home page: http://www.ijrei.com

LIGRATION OF CONTROL O

ISSN (Online): 2456-6934

ORIGINAL ARTICLE

Thermal performance evaluation of half effect Li/Br-H2O vapour absorption refrigeration system with single & multi cascaded vapour compression refrigeration systems using HFO refrigerants for replacing HFC-134a

R. S. Mishra

Department of Mechanical Engineering, Delhi Technological University Delhi, India

Article Information

Received: 28 September 2020 Revised: 15 October 2020 Accepted: 19 November 2020 Available online: 23 November 2020

Keywords:

HFO refrigerant; Thermodynamic performance evaluation; Energy-Exergy; Compression absorption; Cascade System

Abstract

In the present scenario, the energy, exergy, economy, environment and safety strategies are the major issues which are being considered for evaluating thermodynamic performances of vapour compression and absorption refrigeration cycles both having higher as well as lower evaporator temperatures. The technologies of mechanical refrigeration systems are consistently working in thermodynamic processes which also contribute electricity consumption and environmental impact having low thermodynamic performances. These processes also include vapour compression refrigeration with vapour absorption refrigeration systems using half, single, double and triple effect. To improve thermodynamic first (energy) and second law(exergy) performances, the cascading of these refrigeration cycles are essential In this paper, half effect Li/Br-H₂O absorption-compression systems using ecofriendly eight HFO ultra low GWP refrigerants for evaporator temperature of -75°C in single cascading and -150°C in multi-cascading have been compared with HFC-134a for reducing global warming and it was found that the optimum exergetic efficiency is 33.55% low temperature evaporator temperature ranging from -60°C to -63°C and for HFO-1336mzz(Z) is 32.51% of the optimum low temperature evaporator is-58° C and -59° C and 32.32% using R1225ye(Z) of the optimum low temperature evaporator -57° C and -58° C respectively. ©2021 ijrei.com. All rights reserved

1. Introduction

The first law (energy) and second law (exergetic) efficiency in particular, are very important to be considered for designing of refrigeration systems by considering global warming and ozone depletion potentials in general. The concepts of Global Warming Potential (GWP) and ozone depletion potential (ODP) are also be important for consideration in environmental impact particularly in HFO refrigerants. However, GWP is an index which allows a simple comparison to be make between the with warming effects of different gases on a kg to kg basis relative to

Corresponding author: R.S. Mishra Email Address: hod.mechanical.rsm@dtu.ac.in https://doi.org/10.36037/IJREI.2021.5104 carbon. Therefore, GWP depends on the lifetime of a substance in the atmosphere and its infra-red absorption capacity. Chlorofluorocarbons (CFCs) which have been widely used as refrigerants are powerful greenhouse gases producer with high GWPs due to the bank of CFCs in refrigerating systems, and their levels in the atmosphere are still increasing and it will be some time before refrigerant changes will be effective in reducing the global warming effects of refrigerant releases ^[1].

The Hydrocarbons(HC) are in limited use due to its flammable nature. However, hydroflourocarbons (HFC) are also to be limited due to its higher GWP. Similarly, ammonia (R-717) all

have a part to play as substitute refrigerants but due to its toxic nature and not used for domestic applications but can easily be used in industrial refrigeration and air conditioning systems. For analyzing vapour compression and absorption refrigeration systems, the evaluation of energetic and exergetic efficiencies are very important for reducing CO₂ emissions. The exergetic efficiency is defined in terms exergy of product to exergy of fuel. Therefore, ultra-low GWP ecofriendly HFO refrigerants can solve such problems due to its similar to thermodynamic performances for replacing CFC, HCFC and HFC refrigerants in vapour compression systems. The main drawback is in VCRS is higher compressor work which can be reduced by using vapour absorption refrigeration systems. The thermodynamic performances of Li/Br-H₂O and NH₃H₂O VARS are lower and its capacity size is larger. By using compression-absorption system can have reduced the compressor work in VCRS and overall system performances increased ^{[2].}

In this paper, half effect Li/Br-H₂O absorption-compression systems using ecofriendly eight HFO ultra low GWP refrigerants for evaporator temperature of -75°C in single cascading and -150°C in multi-cascading have been compared with HFC-134a for reducing global warming have been considered.

2. Thermodynamic Performances of Vapour compression absorption refrigeration systems

Exergy is commonly considered to be the measure of work potential or maximum work that can be obtained from a system with respect to its environment or the quality of a heat source. Exergy, unlike energy, is a non-conserved quantity, and exergy balances account for inputs, losses and wastes of a process. Exergy input and destruction rates provide an accounting of the efficiency of resources used. Dincer and Rosen [3,4,5] have developed the relationship between energy, exergy and sustainable development and have shown that exergy might allow for measuring impacts on the environment. Mishra et al. [6] suggested that exergy methods should be considered to better realize increased efficiencies and environmental impacts.

Several investigators ^[7-8] have reported that the consumption of electricity in the cascade refrigeration system is lower in comparison to the conventional vapour compression refrigeration system. Lithium bromide (Li/Br-H₂O) absorption refrigeration systems have been evaluated based on their exergy computation [8]. Colorado and Rivera [9] compared the thermodynamic performances of a conventional vapour compression system with compression-absorption cascaded refrigeration systems and found 45% lower electrical energy consumption in cascaded compression-absorption refrigeration system than using conventional vapour compression refrigeration system.

Gebreslassie et al [10], presented at detailed analysis of exergy for half to triple effect absorption. chillers Bereche et al. [11] analyzed single and double-effect Li/Br-H₂O absorption systems using a thermo-economic analysis and exergy. They were able to conclude that single-effect absorption refrigeration systems are suitable utilizing waste heat or operating in cogeneration systems because of their operation at lower temperatures compared to double-effect absorption systems. The double-effect Li/Br-H₂O absorption systems chillers have also been internally analyzed, Morosuk and Tsatsaronis[12] presented an exergy analysis of the internal components of absorption refrigeration machines. They were able to conclude that the absorber and generator destroy 40% of their exergy and are primary candidates for improvement.

Cimsit andOzturk [13] performed thermodynamic analysis of compression-absorption cascaded refrigeration systems by using H₂O-Li/Br and NH₃-H₂O pairs in vapour absorption refrigeration system and R134a, R410a and NH3 in vapour compression refrigeration system and found 48-51% less electrical energy consumption in cascade refrigeration system as compared with conventional vapour compression refrigeration system. Garimella et al. [14] proposed absorption-vapour compression cascade refrigeration system using waste heat and found 30% less electricity consumption than conventional vapour compression refrigeration system. Wang et al. [16] studied solar assisted cascade refrigeration system and found 50% less power consumption than conventional system. Chinnappa et al. [15] analyzed solar energy operated vapour compression-NH₃H₂O absorption cascade refrigeration system using R22 in vapour compression refrigeration cycle and found significant electrical energy saving than vapour compression system.

The application of optimization has been applied to absorption chillers; Gebreslassie et al. [16], assessed the relationship between heat exchange area and exergy. They used a structural method to obtain a simplified equation to estimate the optimum heat exchanger area for absorption chillers. Their analysis also concluded that in the optimum case the highest exergy destruction sources were in the solution heat exchanger and the condenser with all components decreasing their destruction rates as the heat exchange area increased. Optimization of a double effect absorption chiller by Ghani et al [17], showed that there was a relationship between temperatures, COP and exergy. They were able to conclude that an increase in temperature in the generator yielded an increase in exergy efficiency.

A second law-based thermodynamic analysis of water and lithium bromide absorption refrigeration by Kilic and Kaynakli [18] showed exergy loss rates for the major components of the absorption chiller. They were able to conclude that the generator, absorber and evaporator were the largest sources of exergy destruction. They also showed good agreement with Ghani et al. [17] in by increasing the heat source temperatures in the generator resulted in an increase in COP and exergy efficiency of the system.

Osta-Omar and Micallef [19] created a mathematical model of a Li/Br water absorption refrigeration system. Their model incorporated an adiabatic absorber with the goal of identifying key parameters that influence Li/Br-H₂O mass concentrations for both strong and weak solutions. By plotting generator temperatures vs. COP, they showed that increasing temperatures in the generator resulted in a diminishing increase in COP.

3. Importance of HFO refrigerants using Energy-exergy Analysis

The first law (energy) and second law (exergetic) efficiency in particular, are very important to be considered for designing of refrigeration systems by considering global warming and ozone depletion potentials in general. The concepts of Global Warming Potential (GWP) and ozone depletion potential (ODP) are also be important for consideration in environmental impact particularly in HFO refrigerants. However, GWP is an index which allows a simple comparison to be make between the with warming effects of different gases on a kg to kg basis relative to carbon. Therefore, GWP depends on the lifetime of a substance in the atmosphere and its infra-red absorption capacity. Chloroflouro-carbons (CFCs) which have been widely used as refrigerants are powerful greenhouse gases producer with high GWPs due to the bank of CFCs in refrigerating systems, and their levels in the atmosphere are still increasing and it will be some time before refrigerant changes will be effective in reducing the global warming effects of refrigerant releases.

The Hydrocarbons(HC) are in limited use due to its flammable nature. However, hydroflourocarbons (HFC) are also to be limited due to its higher GWP. Similarly, ammonia (R-717) all have a part to play as substitute refrigerants but due to its toxic nature and not used for domestic applications but can easily be used in industrial refrigeration and air conditioning systems. For analyzing vapour compression and absorption refrigeration systems, the evaluation of energetic and exergetic efficiencies are very important for reducing CO₂ emissions. The exergetic efficiency is defined in terms exergy of product to exergy of fuel. Therefore, ultra-low GWP ecofriendly HFO refrigerants can solve such problems due to its similar to thermodynamic performances for replacing CFC, HCFC and HFC refrigerants in vapour compression systems. The main drawdback is in VCRS is higher compressor work which can be reduced by using vapour absorption refrigeration systems. The thermodynamic performances of Li/Br-H₂O and NH₃H₂O VARS are lower and its capacity size is larger. By using compression-absorption system can have reduced the compressor work in VCRS and overall system performances increased [20].

In this paper, half effect Li/Br-H₂O absorption-compression systems using ecofriendly eight HFO ultra low GWP refrigerants for evaporator temperature of -75°C in single cascading and -150°C in multi-cascading have been compared with HFC-134a for reducing global warming and it was found that the optimum exergetic efficiency is 33.55% low temperature evaporator

temperature ranging from -60°C to -63°C and for HFO-1336mzz(Z) is 32.51% of the optimum low temperature evaporator is-58 °C and -59° C and 32.32% using R1225ye(Z) of the optimum low temperature evaporator -57 °C and -58 °C respectively.

4. Results and Discussion

Following numerical values have been used for validation of code developed for Integrated half effect $Li/Br-H_2O$ VARS using ecofriendly refrigerants

- Generator temperature= 80°C
- Absorber temperature=35°C
- Condenser temperature $=35^{\circ}C$
- VARS evaporator temperature=5°C
- load on VARS Evaporator= 35.167 kW
- Ambient (dead state) temperature=25°C
- Temperature overlapping in $MTC = 10^{\circ}C$
- VCR evaporator temperature of MTC=-75°C
- VCR compressor efficiency of MTC= 80%

Table-1(a) shows the Thermodynamic first law (energetic) and second law (exergetic) Performances comparison of following ecofriendly refrigerants with using R134a in the Integrated half effect Li/Br-H₂O VARS using ecofriendly refrigerants at evaporator temperature of -75° C and found that the thermodynamic first law (energy) performance using HFO-1233zd(E) is highest and exergetic second law performance is also highest and first law (energy) improvement is 29.22% while improvement in the second law (exergetic) performances using R1233zd(E) in the cascaded VCRS is 82.03%.

Similarly, percentage improvement first law energy performance (COP) of cascaded system using R1225ye(Z) and HFO-1336mzz(Z) is 0.57% lower as compared by using R134a in the low temperature VCRS cycle. Similarly, second law (exergetic) performance is 2.5% lower than using R134a in VCRS section. It was also found that the thermodynamic first law (energy) and second law (exergetic) performances using R1225ye(Z) is nearly same in VCRS section up to -75°C of evaporator in VCRS section. Similarly, improvement in first law (energetic) performance using R245fa in VCRS section is 28.94% higher and exergetic second law performance is 80.83% higher. The percentage improvement using other refrigerants in VCRS section is also shown in table-1(a) respectively.

Refrigerants in	COP_Cascade	EDR_	Cascade	%Improvement	%	%Improvement	Half	Half	Half Effect
the Integrated		Cascade	Exergetic	in COP_Cascade	Decrement	in Exergetic	Effect	Effect	VARS
VARS system			Efficiency		in EDR_	Efficiency	VARS	VARS	Exergetic
					Cascade		COP	EDR	Efficiency
R1233zd(E)	0.5454	2.022	0.3310	29.22	-55.08	82.03	0.4221	4.50	0.1818
HFO1336mzz(Z)	0.5377	2.156	0.3169	27.39	-52.09	74.28	0.4221	4.50	0.1818
R1225ye(Z)	0.5377	2.156	0.3169	27.40	-52.10	74.30	0.4221	4.50	0.1818
R134a	0.5401	2.112	0.3213	27.97	-53.06	76.72	0.4221	4.50	0.1818
R32	0.5383	2.146	0.3179	27.53	-52.32	74.84	0.4221	4.50	0.1818
R245fa	0.5442	2.042	0.3288	28.94	-54.42	80.83	0.4221	4.50	0.1818

Table-1(a): Thermodynamic first law (energetic) performances of Integrated half effect Li/Br-H2O VARS using ecofriendly refrigerants at evanorator temperature -75°C

Table-1(b): Thermodynamic first law (energetic) and second law (exergetic) performances of following ecofriendly refrigerants with comparison with using R134a in the Integrated half effect Li/Br-H₂O VARS using ecofriendly refrigerants at evaporator temperature -75°C

		1
Refrigerants in the Integrated VARS	%Improve ment in COP_MTC	%Improve ment in COP_ cascade
system		with respect to R134a
R1233zd(E)	0.9813	3.09
HFO-1336mzz(Z)	0.4444	-1.3694
R1225ye(Z)	0.4444	-1.369
R32	-0.3333	-1.0582
R245fa	0.759	2.334
R134a	0.0	0.0

Table-1(b) shows the Thermodynamic first law (energetic) and second law (exergetic) Performances comparison of following

ecofriendly refrigerants with using R134a in the Integrated half effect Li/Br-H₂O VARS using ecofriendly refrigerants at evaporator temperature of -75° C and found that the thermodynamic first law (energy) performance using HFO-1233zd(E) is 0.98% higher than using R134a and exergetic second law performance is 3.09% higher. Similarly, first law energy performance (COP) of cascaded system is 0.44% higher but second law exergetic performance is 1.67% lower. Similarly, first law(energy) performance R245fa is 0.76% higher and exergetic second law performance is 2.334% higher than using R134a in integrated system. However, R32 is 0.33% lower and exergetic second law performance is 1.058% lower than using R134a in integrated system. Although thermodynamic performances using R236fa is nearly same but it has ultra-higher global warming potential as compared to R134a.

 Table-2(a): Effect of low temperature VCRS evaporator on the thermodynamic first law (energetic) and second law (exergetic) performances of Integrated halfeffect Li/Br-H₂O VARS using R1233zd(E) ecofriendly refrigerant at evaporator temperature=-75°C

Integ	raiea naijejjeci	$L_{\mu}D_{\mu}-H_{2}$	O VIIKS using	R12552u(L) ecojn	ienaly rejriger	uni ui evaporaior i	emperatur	e==75 C	
Evaporator	COP_Cascade	EDR_	Cascade	%Improvement	%	%Improvement	Half	Half	Half Effect
temperature in		Cascade	Exergetic	in COP_Cascade	Decrement	in Exergetic	Effect	Effect	VARS
VCRS section			Efficiency		in EDR_	Efficiency	VARS	VARS	Exergetic
(°C)					Cascade		COP	EDR	Efficiency
-75	0.5454	2.022	0.3310	29.22	-55.08	82.03	0.4221	4.50	0.1818
-70	0.5608	1.997	0.3337	32.87	-55.63	83.54	0.4221	4.50	0.1818
-65	0.5764	1.983	0.3352	36.57	-55.93	84.38	0.4221	4.50	0.1818
-64	0.5796	1.982	0.3354	37.37	-55.96	84.46	0.4221	4.50	0.1818
-63	0.5828	1.981	0.3355	38.07	55.98	84.52	0.4221	4.50	0.1818
-62	0.5859	1.981	0.3355	38.82	-55.99	84.54	0.4221	4.50	0.1818
-61	0.5891	1.981	0.3355	39.58	-55.99	84.54	0.4221	4.50	0.1818
-60	0.5923	1.981	0.3355	40.33	-55.98	84.51	0.4221	4.50	0.1818
-59	0.5955	1.982	0.3353	41.09	55.96	84.45	0.4221	4.50	0.1818
-58	0.5987	1.984	0.3352	41.85	55.92	84.35	0.4221	4.50	0.1818
-57	0.6019	1.986	0.3349	42.61	55.88	84.23	0.4221	4.50	0.1818
-56	0.6052	1.988	0.3347	43.38	55.82	84.08	0.4221	4.50	0.1818
-55	0.6084	1.991	0.3343	44.14	-55.76	83.89	0.4221	4.50	0.1818
-50	0.6246	2.014	0.3317	47.99	-55.24	82.47	0.4221	4.50	0.1818
-45	0.6411	2.052	0.3276	51.88	-54.39	80.20	0.4221	4.50	0.1818
-40	0.6576	2.107	0.3218	55.81	-53.17	77.01	0.4221	4.50	0.1818
-35	0.6743	2.182	0.3142	59.76	-51.50	7.83	0.4221	4.50	0.1818
-30	0.6901	2.282	0.3047	63.74	-49.29	67.59	0.4221	4.50	0.1818
-25	0.7080	2.412	0.2930	67.74	-46.39	61.19	0.4221	4.50	0.1818
-20	0.7249	2.583	0.2791	71.76	-42.61	53.52	0.4221	4.50	0.1818
-15	0.7419	2.807	0.2627	75.78	-37.63	44.48	0.4221	4.50	0.1818

Integr	aiea naijej		1120 VAKS USU	ig 111 01550m22().	L) ecojnenaly rej	rigerani ai evapor		<i>ruiure=-/</i> .	
Evaporator	COP_	EDR_	Cascade	%	% Decrement	%Improvement	Half	Half	Half Effect
temperature in	Cascade	Cascade	Exergetic	Improvement	in EDR_	in Exergetic	Effect	Effect	VARS
VCRS section			Efficiency	in COP_	Cascade	Efficiency	VARS	VARS	Exergetic
(°C)				Cascade			COP	EDR	Efficiency
-75	0.5377	2.156	0.3169	27.39	-52.09	74.28	0.4221	4.5	0.1818
-70	0.5535	2.118	0.3207	31.14	-52.94	76.41	0.4221	4.5	0.1818
-65	0.5696	2.092	0.3234	34.96	-53.52	77.90	0.4221	4.5	0.1818
-64	0.5729	2.088	0.3238	35.73	-53.60	78.11	0.4221	4.5	0.1818
-63	0.5762	2.085	0.3242	36.51	-53.67	78.30	0.4221	4.5	0.1818
-62	0.5794	2.082	0.3245	37.29	-53.73	78.46	0.4221	4.5	0.1818
-61	0.5827	2.080	0.3247	38.06	-53.78	78.59	0.4221	4.5	0.1818
-60	0.5860	2.078	0.3249	38.85	-53.82	78.69	0.4221	4.5	0.1818
-59	0.5893	2.077	0.3250	39.63	-53.85	78.76	0.4221	4.5	0.1818
58 (optimum)	0.5927	2.076	0.3251	40.41	-53.86	78.80	0.4221	4.5	0.1818
57 (optimum)	0.5960	2.076	0.3251	41.20	-53.87	78.80	0.4221	4.5	0.1818
-56	0.5993	2.077	0.3250	41.99	-53.86	78.78	0.4221	4.5	0.1818
-55	0.6027	2.078	0.3249	42.78	-53.84	78.73	0.4221	4.5	0.1818
-50	0.6195	2.091	0.3235	46.77	-53.54	77.96	0.4221	4.5	0.1818
-45	0.6365	2.12	0.3206	50.80	-52.90	76.32	0.4221	4.5	0.1818
-40	0.6536	2.166	0.3159	54.87	-51.88	73.75	0.4221	4.5	0.1818
-35	0.6709	2.232	0.3094	58.96	-50.40	70.16	0.4221	4.5	0.1818
-30	0.6883	2.324	0.3008	63.08	-48.36	65.47	0.4221	4.5	0.1818
-25	0.7058	2.447	0.2901	67.21	-45.62	59.56	0.4221	4.5	0.1818
-20	0.7232	2.611	0.277	71.35	-41.99	52.34	0.4221	4.5	0.1818
-15	0.7409	2.829	0.2612	75.48	-37.15	43.66	0.4221	4.5	0.1818

Table-2(b): Effect of low temperature VCRS evaporator on the thermodynamic first law (energetic) and second law (exergetic) Performances of Integrated halfeffect Li/Br-H₂O VARS using HFO1336mzz(Z) ecofriendly refrigerant at evaporator temperature=-75°C

Table-2(c): Effect of low temperature VCRS evaporator on the thermodynamic first law (energetic) and second law (exergetic) performances of Integrated halfeffect Li/Br-H₂O VARS using R1225ve(Z) ecofriendly refrigerant at evaporator temperature=75°C

Evaporator	COP	EDR	Cascade	%	%	%	Half	Half	Half Effect
temperature	Cascade	Cascade	Exergetic	Improvement	Decrement	Improvement	Effect	Effect	VARS
in VCRS section			Efficiency	in COP_	in EDR	in Exergetic	VARS	VARS	Exergetic
(°C)			5	Cascade	Cascade	Efficiency	COP	EDR	Efficiency
-75	0.5377	2.156	0.3169	27.40	-52.10	74.30	0.4221	4.5	0.1818
-70	0.5531	2.124	0.3201	31.05	-52.80	76.05	0.4221	4.5	0.1818
-65	0.5689	2.104	0.3222	34.79	-53.25	77.21	0.4221	4.5	0.1818
-64	0.5721	2.101	0.3225	35.55	-53.31	77.37	0.4221	4.5	0.1818
-63	0.5753	2.099	0.3237	36.31	-53.37	77.50	0.4221	4.5	0.1818
-62	0.5785	2.097	0.3229	37.07	-53.41	77.61	0.4221	4.5	0.1818
-61	0.5818	2.095	0.3231	37.87	-53.44	77.69	0.4221	4.5	0.1818
-60(optimum)	0.5850	2.094	0.3232	38.60	-53.46	77.75	0.4221	4.5	0.1818
-59 (optimum)	0.5883	2.094	0.3232	39.37	-53.47	77.77	0.4221	4.5	0.1818
-58 (optimum)	0.5915	2.094	0.3232	40.15	-53.47	77.77	0.4221	4.5	0.1818
-57	0.5948	2.095	0.3231	40.92	-53.46	77.74	0.4221	4.5	0.1818
-56	0.5981	2.096	0.3230	41.70	-53.43	77.68	0.4221	4.5	0.1818
-55	0.6014	2.097	0.3229	42.48	-53.40	77.59	0.4221	4.5	0.1818
-50	0.618	2.113	0.3212	46.42	-53.05	76.69	0.4221	4.5	0.1818
-45	0.6349	2.143	0.3181	50.42	-52.37	74.97	0.4221	4.5	0.1818
-40	0.6519	2.194	0.3134	54.46	-51.31	72.37	0.4221	4.5	0.1818
-35	0.6692	2.259	0.3069	58.55	-49.81	68.79	0.4221	4.5	0.1818
-30	0.6866	2.351	0.2984	62.66	-47.76	64.15	0.4221	4.5	0.1818
-25	0.7040	2.474	0.2879	66.80	-45.03	58.33	0.4221	4.5	0.1818
-20	0.7216	2.637	0.2750	70.96	-41.40	51.23	0.4221	4.5	0.1818
-15	0.7392	2.854	0.2595	75.14	-36.58	42.71	0.4221	4.5	0.1818

Table-2(a) to Table-2(g) shows the Thermodynamic first law (energetic) and second law (exergetic) performances comparison of following ecofriendly refrigerants with using ecofriendly

HFO refrigerants in the low temperature vapour compression cycle in the Integrated half effect Li/Br-H₂O VARS at VCRS evaporator temperature of -75° C and found that the

thermodynamic first law (energy) performance and second law(exergetic) performance is using HFO-1233zd(E) is highest and using R1234yf in VCRS circuit is lowest. The thermodynamic performances using HFO-1336mzz(z) and R1225ye(Z) is nearly similar. Similarly, and first law (energy) improvement is 29.22% while improvement in the second law (exergetic) performance using R1233zd(E) in the cascaded VCRS is 82.03%. It was found by increasing evaporator temperature, the first law (energy) performance is increasing while second(exergetic) law performance is increasing and reached to an optimum value and then decreasing. The optimum values of exergetic efficiency is 33.55% for optimum temperature obtained for R1233zd(E) is from -60°C to -63°C HFO-1336mzz(Z) is 32.51% from evaporator temperature range from -58°C to -59°C of cooling evaporator temperature while for R1225yez(Z), the exergetic efficiency is 32.32% for -58°C to -60°C. Table-3 shows the Thermodynamic first law (energetic) and second law (exergetic) performances with varying condenser temperature in the half effect Li/Br-H₂O VARS for R1233zd(E) in VCRS at evaporator temperature.

 Table-2(d): Effect of low temperature VCRS evaporator on the thermodynamic first law (energetic) and second law (exergetic) Performances of Integrated half effect Li/Br-H₂O VARS using HFO1234ze(Z) ecofriendly refrigerant at evaporator temperature=-75°C

Evaporator	COP_Cascade	EDR_	Cascade	%Improvement	%	%	Half	Half	Half Effect
temperature in		Cascade	Exergetic	in COP_Cascade	Decrement	Improvement	Effect	Effect	VARS
VCRS section			Efficiency		in EDR_	in Exergetic	VARS	VARS	Exergetic
(°C)					Cascade	Efficiency	COP	EDR	Efficiency
-30	0.6925	2.262	0.3066	64.06	-49.74	68.63	0.4221	4.5	0.1818
-25	0.7090	2.396	0.2945	67.99	-46.76	61.96	0.4221	4.5	0.1818
-20	0.7257	2.570	0.2801	71.94	-42.90	54.07	0.4221	4.5	0.1818
-15	0.7425	2.797	0.2633	75.92	-37.84	44.85	0.4221	4.5	0.1818

Table-2(e): Effect of low temperature VCRS evaporator on the thermodynamic first law (energetic) and second law (exergetic) Performances of Integrated half effect Li/Br-H₂O VARS using HFO1234ze(E) ecofriendly refrigerant at evaporator temperature=-75°C

Evaporator	COP_Cascade	EDR_	Cascade	%Improvement	%	%	Half	Half	Half Effect
temperature in		Cascade	Exergetic	in COP_Cascade	Decrement	Improvement	Effect	Effect	VARS
VCRS section			Efficiency		in EDR_	in Exergetic	VARS	VARS	Exergetic
(°C)					Cascade	Efficiency	COP	EDR	Efficiency
-30	0.6871	2.342	0.2992	62.80	-47.95	64.57	0.4221	4.5	0.1818
-25	0.7047	2.464	0.2887	66.96	-45.26	58.80	0.4221	4.5	0.1818
-20	0.7223	2.626	0.2758	71.13	-41.66	51.70	0.4221	4.5	0.1818
-15	0.7399	2.842	0.2603	75.30	-36.84	43.15	0.4221	4.5	0.1818

 Table-2(f): Effect of low temperature VCRS evaporator on the thermodynamic first law (energetic) and second law (exergetic) Performances of Integrated half effect Li/Br-H₂O VARS using HFO1243zf ecofriendly refrigerant at evaporator temperature=-75°C

			-20	<u>8 </u>		$r \cdots r \cdots r$	· · · · · · · · · · · ·		
Evaporator	COP_Cascade	EDR_	Cascade	%Improvement	%	%Improvement	Half	Half	Half Effect
temperature in		Cascade	Exergetic	in COP_Cascade	Decrement	in Exergetic	Effect	Effect	VARS
VCRS section			Efficiency		in EDR_	Efficiency	VARS	VARS	Exergetic
(°C)					Cascade		COP	EDR	Efficiency
-30	0.6874	2.338	0.2996	62.86	-48.05	64.79	0.4221	4.5	0.1818
-25	0.7047	2.463	0.2887	66.97	-45.27	58.82	0.4221	4.5	0.1818
-20	0.7221	2.628	0.2756	71.09	-41.59	51.59	0.4221	4.5	0.1818
-15	0.7396	2.848	0.2599	75.22	-36.72	42.95	0.4221	4.5	0.1818

 Table-2(g): Effect of low temperature VCRS evaporator on the thermodynamic first law (energetic) and second law (exergetic) Performances of Integrated half effect Li/Br-H₂O VARS using HF01234yf ecofriendly refrigerant at evaporator temperature=-75°C

Evaporator	COP_Cascade	EDR_	Cascade	%	%	%Improvement	Half	Half	Half Effect
temperature in		Cascade	Exergetic	Improvement	Decrement	in Exergetic	Effect	Effect	VARS
VCRS section			Efficiency	in COP_	in EDR_	Efficiency	VARS	VARS	Exergetic
(°C)				Cascade	Cascade		COP	EDR	Efficiency
-50	0.6123	2.201	0.3124	45.07	-51.08	71.81	0.4221	4.5	0.1818
-45	0.6298	2.220	0.3105	49.22	-50.66	70.80	0.4221	4.5	0.1818
-40	0.6476	2.258	0.3070	53.42	-49.83	68.84	0.4221	4.5	0.1818
-35	0.6672	2.323	0.3009	58.08	-48.37	65.51	0.4221	4.5	0.1818
-30	0.6834	2.40	0.2941	61.91	-46.67	61.77	0.4221	4.5	0.1818
-25	0.7014	2.516	0.2844	66.18	-44.10	56.45	0.4221	4.5	0.1818
-20	0.7195	2.672	0.2723	70.46	-40.63	49.79	0.4221	4.5	0.1818
-15	0.7375	2.883	0.2575	74.74	-35.94	41.65	0.4221	4.5	0.1818

Condenser	COP	EDR	Cascade	%	% Decrement in	%Improvement	Half	Half	Half Effect
temperature in	Cascade	Cascade	Exergetic	Improvement	EDR_Cascade	in Exergetic	Effect	Effect	VARS
VARS section			Efficiency	in COP_		Efficiency	VARS	VARS	Exergetic
(°C)				Cascade			COP	EDR	Efficiency
30	0.5471	2.017	0.3315	29.14	-54.98	81.65	0.4237	4.480	0.1825
32	0.5464	2.019	0.3313	29.17	-55.02	81.81	0.4230	4.488	0.1822
34	0.5458	2.021	0.3311	29.21	-55.06	81.96	0.4224	4.496	0.1819
35	0.5454	2.022	0.3310	29.22	-55.08	82.03	0.4221	4.50	0.1818
36	0.5451	2.023	0.3308	29.24	-55.10	82.11	0.4218	4.504	0.1817
38	0.5444	2.025	0.3306	29.27	-55.13	82.26	0.4211	4.513	0.1814
40	0.5437	2.027	0.3304	29.30	-55.17	82.41	0.4205	4.521	0.1811
42	0.5430	2.029	0.3302	29.33	-55.20	82.56	0.4199	4.529	0.1809
44	0.5424	2.031	0.3300	29.36	-55.21	82.71	0.4193	4.537	0.1806
45	0.5420	2.032	0.3299	29.38	-55.26	82.78	0.4189	4.541	0.1805

 Table-3: Effect of VARS condenser temperature on the thermodynamic first law (energetic) and second law (exergetic) Performances of Integrated

 halfeffect Li/Br-H2O VARS using R1233zd(E) ecofriendly refrigerant at evaporator temperature= $-75^{\circ}C$

 Table-4: Effect of VARS evaporator temperature on the thermodynamic first law (energetic) and second law (exergetic) Performances of Integrated halfeffect Li/Br-H₂O VARS using R1233zd(E) ecofriendly refrigerant at evaporator temperature=-75°C

Evaporator	COP_	EDR_	Cascade	%Improvement	% Decrement	%Improvement	Half	Half	Half Effect
temperature in	Cascade	Cascade	Exergetic	in COP_Cascade	in EDR_Cascade	in Exergetic	Effect	Effect	VARS
VARS section			Efficiency			Efficiency	VARS	VARS	Exergetic
(°C)							COP	EDR	Efficiency
3	0.5479	1.948	0.3392	30.48	-51.61	70.47	0.4199	4.026	0.1990
4	0.5467	1.986	0.3351	29.86	-53.32	75.97	0.4210	4.252	0.1904
5	0.5454	2.022	0.3310	29.22	-55.08	82.03	0.4221	4.50	0.1818
6	0.5442	2.059	0.3269	28.60	-56.87	88.77	0.4232	4.775	0.1732
7	0.5430	2.097	0.3299	27.97	-58.71	96.28	0.4243	5.079	0.1645
8	0.5418	2.136	0.3189	27.34	-60.59	104.70	0.4255	5.42	0.1558
9	0.5404	2.175	0.3149	26.72	-62.51	114.2	0.4266	5.802	0.1470
10	0.5395	2.215	0.3110	26.09	-64.47	125.0	0.4278	6.235	0.1382

Table-4 shows the Thermodynamic first law (energetic) and second law (exergetic) performances with varying evaporator temperature in the half effect Li/Br-H₂O VARS for R1233zd(E) in VCRS at evaporator temperature of -75° C and found that by

increasing evaporator temperature, the first law (energy) performance is increasing while second(exergetic) law performance is decreasing and exergy destruction ratio is increasing.

Table-5(a): Effect of absorber temperature in VARS on the thermodynamic first law (energetic) and second law (exergetic) Performances of Integrated halfeffect Li/Br-H₂O VARS using R1233zd(E) ecofriendly refrigerant at evaporator temperature=-75°C

High pressure	COP_	EDR_	Cascade	%	% Decri	%	Half	Half	Half Effect
Absorber and low	Cascade	Cascade	Exergetic	Improvement	ment in	Improvem	Effect	Effect	VARS
pressure Absorber			Efficiency	in EDR_	EDR_	ent in	VARS	VARS	Exergetic
temperature in VARS				Cascade	Cascade	Exergetic	COP	EDR	Efficiency
section (°C)						Eff			
30	0.5580	1.985	0.3350	28.65	-54.38	79.29	0.4338	4.352	0.1868
32	0.5525	2.001	0.3332	28.90	-54.69	80.48	0.4286	4.416	0.1846
34	0.5476	2.015	0.3317	29.12	-54.96	81.54	0.4241	4.474	0.1827
35	0.5454	2.022	0.3310	29.22	-55.08	82.03	0.4221	4.50	0.1818
36	0.5454	2.028	0.3303	29.32	-55.19	82.50	0.4201	4.526	0.1810
38	0.5454	2.040	0.3290	29.50	-55.41	83.37	0.4165	4.574	0.1794
40	0.5454	2.051	0.3278	29.66	-55.60	84.18	0.4132	4.616	0.1780
42	0.5454	2.061	0.3267	29.82	-55.78	84.93	0.4102	4.66	0.1767
44	0.5454	2.070	0.3257	29.96	-55.94	85.63	0.4073	4.70	0.1755
45	0.5454	2.075	0.3252	30.03	-56.02	85.96	0.4060	4.718	0.1749

Table-5(a) shows the Thermodynamic first law (energetic) and second law (exergetic) performances with varying absorber temperature in the half effect Li/Br-H₂O VARS for R1233zd(E) in VCRS at absorber temperature of -75° C and found that by

increasing evaporator temperature, the first law (energy) performance is increasing while second(exergetic) law performance is decreasing and exergy destruction ratio is increasing. To see effect of low pressure and high absorber

temperature with thermodynamic performances, it is found that high pressure absorber temperature is significantly effecting thermodynamic performances as compared to low pressure absorber temperature of half effect Li/Br-H₂O vapour absorption refrigeration system. Similarly, thermodynamic performances also significantly effecting by varying generator temperature.

Table-5(b): Effect of high pressure absorber temperature VARS on the thermodynamic first law (energetic) and second law (exergetic) Performances of Integrated halfeffect Li/Br-H₂O VARS using R1233zd(E) ecofriendly refrigerant at evaporator temperature= $-75^{\circ}C$

	COD	EDD		0/ I	N.D.	0/ T	TT 10	TT 10	
High pressure	COP_	EDR_	Cascade	%Improve	% Decri	%Improve	Half	Half	Half Effect
Absorber temperature	Cascade	Cascade	Exergetic	ment in	ment in	ment in	Effect	Effect	VARS
in VCRS section (°C)			Efficiency	COP_Cascade	EDR_	Exergetic	VARS	VARS	Exergetic
					Cascade	Efficiency	COP	EDR	Efficiency
30	0.5540	1.977	0.3337	28.83	-54.61	80.16	0.430	4.399	0.1852
35	0.5454	2.022	0.3310	29.22	-55.08	82.03	0.4221	4.50	0.1818
40	0.5390	2.041	0.3289	29.51	-55.43	83.45	0.4162	4.578	0.1793
45	0.5338	2.057	0.3272	29.75	-55.71	84.62	0.4114	4.643	0.1772

Table-5(c): Effect of low pressure absorber temperature VARS on the thermodynamic first law (energetic) and second law (exergetic) Performances of Integrated halfeffect Li/Br-H₂O VARS using R1233zd(E) ecofriendly refrigerant at evaporator temperature=-75°C

<i>cj</i> ==== 8: ===	j g j								
Low pressure	COP_	EDR_	Cascade	%Improve	% Decri	%Improve	Half	Half	Half Effect
Absorber temperature	Cascade	Cascade	Exergetic	ment in	ment in	ment in	Effect	Effect	VARS
in VCRS section (°C)			Efficiency	EDR_Cascade	EDR_	Exergetic	VARS	VARS	Exergetic
					Cascade	Efficiency	COP	EDR	Efficiency
30	0.5493	2.01	0.3322	29.04	-54.87	81.18	0.4257	4.454	0.1834
35	0.5493	2.01	0.3322	29.22	-55.08	82.03	0.4221	4.50	0.1818
40	0.5493	2.01	0.3322	29.37	-55.26	82.77	0.4190	4.541	0.1805
45	0.5493	2.01	0.3322	29.51	-55.42	83.41	0.4164	4.576	0.1793

Table-6: Effect of Generator temperature of VARS on the thermodynamic first law (energetic) and second law (exergetic) Performances of Integrated half effect Li/Br-H₂O VARS using R1233zd(E) ecofriendly refrigerant at evaporator temperature=-75°C

Generator	COP	EDR	Cascade	%	% Decrement	%Improvement	Half	Half	Half Effect
temperature in	Cocordo	Cocordo	Exergetic	Improvement	in FDR	in Exergetic	Effect	Effect	VARS
VADC and an	Cascade	Cascade	Efficience		III LDI(_	Efficience	VADC	VADC	Energetia
VARS section			Efficiency	In COP_Cascade	Cascade	Efficiency	VAKS	VAKS	Exergenc
(°C)							COP	EDR	Efficiency
70	0.5522	1.792	0.3582	28.91	-49.72	63.46	0.4283	3.564	0.2191
75	0.5486	1.908	0.3439	29.08	-52.74	73.21	0.4250	4.037	0.1985
80	0.5454	2.022	0.3310	29.22	-55.08	82.03	0.4221	4.500	0.1818
85	0.5426	2.133	0.3192	29.35	-56.95	90.04	0.4195	4.954	0.1680
90	0.5401	2.241	0.3085	29.47	-58.47	97.34	0.4171	5.396	0.1563

5. Performance of Integrated Half effect VARS with Multi Cascading with VCRS

The following cascaded absorption-compression refrigeration systems have been considered in present investigation.

System-1

Li/Br-H₂O half effect vapour absorption refrigeration system at 10°C of evaporator temperature cascaded with three stages vapour compression refrigeration system using R1233zd(E) in medium temperature cycle at evaporator temperature =-50°C, R-1225ye(Z) in intermediate temperature cycle at evaporator temperature = -95°C and using HFO-1336mzz(Z) in lower temperature cycle at evaporator temperature = -150°C.

System-2

 $Li/Br-H_2O$ half effect vapour absorption refrigeration system at $10^{\circ}C$ of evaporator temperature cascaded with three stages

vapour compression refrigeration system using R1233zd(E) in medium temperature cycle at evaporator temperature =-50°C, HFO-1336mzz(Z) in intermediate temperature cycle at evaporator temperature = -95°C and using R-1225ye(Z) in lower temperature cycle at evaporator temperature = -150°C.

System-3

Li/Br-H₂O half effect vapour absorption refrigeration system at 10°C of evaporator temperature cascaded with three stages vapour compression refrigeration system using R1234yf in medium temperature cycle at evaporator temperature =-50°C, R-1225ye(Z) in intermediate temperature cycle at evaporator temperature = -95°C and using HFO-1336mzz(Z) in lower temperature cycle at evaporator temperature = -150°C.

System-4

 $Li/Br-H_2O$ half effect vapour absorption refrigeration system at $10^{\circ}C$ of evaporator temperature cascaded with three stages

vapour compression refrigeration system using R1234yf) in medium temperature cycle at evaporator temperature =-50°C, HFO-1336mzz(Z) in intermediate temperature cycle at evaporator temperature = -95°C and using R-1225ye(Z) in lower temperature cycle at evaporator temperature = -150°C.

Following numerical values have been used for validation of code developed for Integrated half effect $Li/Br-H_2O$ VARS using ecofriendly refrigerants.

- Generator temperature= 80°C
- Absorber temperature=35°C
- Condenser temperature =35°C
- VARS evaporator temperature=10°C
- load on VARS Evaporator= 175 kW
- Ambient (dead state) temperature=25°C
- Temperature overlapping in $MTC = 10^{\circ}C$
- VCR evaporator temperature of MTC=-50°C
- VCR evaporator temperature of ITC=-95°C
- VCR evaporator temperature of LTC=-150°C
- VCR compressor efficiency of MTC= 80%
- VCR compressor efficiency of ITC= 80%
- VCR compressor efficiency of LTC= 80%

• Ambient (dead state) temperature=25°C

Thermodynamic first law energy performances of integrated half effect Li/Br-H₂O VARS system cascaded with three stages vapour compression cascaded systems shown in table 7(a) respectively. It was observed that system-2 has lowest thermodynamic performances than system-1, however first law thermodynamic performance improvement is less. Similarly, Thermodynamic second tlaw exergy performances of cascaded half effect Li/Br-H₂O VARS system cascaded with three stages vapour compression cascaded systems shown in table-7(b) respectively. It was observed that system-2 has higher thermodynamic exergetic performances than system-1. However, second law thermodynamic exergetic performance improvement for -150°C evaporator temperature is less. It means by putting HFO-1336mzz(Z) in lower temperature cycle in system-1 gives lower first and second law thermodynamic performances than using R-1225ye(Z) in low temperature cycle. However, first law(energy) and second law exegetic performances of double stage cascaded integrated system-1 is higher than double stage cascaded integrated system-2 at evaporator temperature of -95°C.

Table-7(a): Thermodynamic first law (energetic) Performances of Integrated half effect Li/Br-H2O VARS using ecofriendly refrigerants at evaporator temperature -150°C

				eraperare	r temperatare res e		
Integrated	COP_VARS	COP_mtc	COP_ITC	COP_LTC	% Improvement in	% Improvement in	% Improvement in COP_LTC
system					COP_mtc	COP_TC	
System-1	0.4278	0.6183	0.7776	0.8034	44.52	81.75	87.78
System-2	0.4278	0.6183	0.7745	0.8073	44.52	81.02	88.69
System-3	0.4278	0.6029	0.7625	0.7903	40.92	78.22	84.72
System-4	0.4278	0.6029	0.7594	0.7942	40.92	77.5	85.62

Table-7(b:) Thermodynamic second law (exergetic) Performances of Integrated hal feffect Li/Br-H₂O VARS using ecofriendly refrigerants at evaporator temperature=-150°C

Integrated	Exergetic	Exergetic	Exergetic	Evergetic	% Improvement	%Improvement	%Improve
megrateu	Excigence	Excigence	Excigence	Excigence	70 Improvement	/omprovement	70 mpiove
system	Efficiency	Efficiency	Efficiency	Efficiency	in Exergetic	in Exergetic	ment in Exergetic
	(ETA_vars)	(ETA_mtc)	(ETA_ITC)	(ETA_l tc)	Efficiency	Efficiency	Efficiency (ETA_ LTC)
					(ETA_{MTC})	(ETA_ITC)	
System-1	0.1382	0.3126	0.4438	0.4510	126.2	221.1	226.3
System-2	0.1382	0.3126	0.4380	0.4652	126.2	216.9	236.6
System-3	0.1382	0.2898	0.4330	0.4436	109.7	213.2	221.2
System-4	0.1382	0.2896	0.4274	0.4576	109.7	209.0	231.0

Table-7(c): Thermodynamic exergy destruction ratio of Integrated halfeffect Li/Br-H₂O VARS using ecofriendly refrigerants at evaporator temperature= $-150^{\circ}C$

				remperature 1	200		
Integrated	EDR_vars	EDR_mtc	EDR_ITC	ED R_	% decrement	% decrement in	% decrement in
system				L TC	in EDR_MTC	EDR_ITC	EDR_LTC
System-1	6.235	2.199	1.253	1.217	-64.73	-79.9	-80.48
System-2	6.235	2.199	1.283	1.150	-64.73	-79.42	-81.56
System-3	6.235	2.450	1.31	1.254	-60.7	-79.0	-79.88
System-4	6.235	2.450	1.34	1.186	-60.7	-78.51	-80.96

System-5

 $Li/Br-H_2O$ half effect vapour absorption refrigeration system at $10^{\circ}C$ of evaporator temperature cascaded with three stages vapour compression refrigeration system using R1234ze(Z) in

medium temperature cycle at evaporator temperature =- 30° C, R1233zd(E) in intermediate temperature cycle at evaporator temperature = -75° C and using HFO-1336mzz(Z) in lower temperature cycle at evaporator temperature = -135° C.

System-6

Li/Br-H₂O half effect vapour absorption refrigeration system at 10°C of evaporator temperature cascaded with three stages vapour compression refrigeration system using R1234ze(Z) in medium temperature cycle at evaporator temperature =-30°C, HFO-1336mzz(Z) in intermediate temperature cycle at evaporator temperature = -75°C and using R-1225ye(Z) in lower temperature cycle at evaporator temperature = -135°C.

System-7

Li/Br-H₂O half effect vapour absorption refrigeration system at 10°C of evaporator temperature cascaded with three stages vapour compression refrigeration system using R1233zd(E) in medium temperature cycle at evaporator temperature =-50°C, R-1225ye(Z) in intermediate temperature cycle at evaporator temperature = -95°C and using HFO-1336mzz(Z) in lower temperature cycle at evaporator temperature = -135°C.

System-8

Li/Br-H₂O half effect vapour absorption refrigeration system at 10°C of evaporator temperature cascaded with three stages vapour compression refrigeration system using R1233zd(E) in medium temperature cycle at evaporator temperature =-50°C, HFO-1336mzz(Z) in intermediate temperature cycle at evaporator temperature = -95°C and using R-1225ye(Z) in lower temperature cycle at evaporator temperature = -150°C.

System-9

Li/Br-H₂O half effect vapour absorption refrigeration system at 10°C of evaporator temperature cascaded with three stages vapour compression refrigeration system using R1234ze(E) in medium temperature cycle at evaporator temperature =-30°C, R1225ye(Z) in intermediate temperature cycle at evaporator temperature = -75° C and using HFO-1336mzz(Z) in lower temperature cycle at evaporator temperature = -135° C.

System-10

Li/Br-H₂O half effect vapour absorption refrigeration system at 10°C of evaporator temperature cascaded with three stages vapour compression refrigeration system using R1234ze(E) in medium temperature cycle at evaporator temperature =-30°C, HFO-1336mzz(Z) in intermediate temperature cycle at evaporator temperature = -75°C and using R1225ye(Z) in lower temperature cycle at evaporator temperature = -135°C.

System-11

Li/Br-H₂O half effect vapour absorption refrigeration system at 10°C of evaporator temperature cascaded with three stages vapour compression refrigeration system using R1243zf in medium temperature cycle at evaporator temperature =-50°C, R-1225ye(Z) in intermediate temperature cycle at evaporator

temperature = -95° C and using HFO-1336mzz(Z) in lower temperature cycle at evaporator temperature = -135° C.

System-12

Li/Br-H₂O half effect vapour absorption refrigeration system at 10°C of evaporator temperature cascaded with three stages vapour compression refrigeration system using R1243zf in medium temperature cycle at evaporator temperature =-30°C, HFO-1336mzz(Z)in intermediate temperature cycle at evaporator temperature = -75°C and using R-1225ye(Z) in lower temperature cycle at evaporator temperature = -135°C.

System13

Li/Br-H₂O half effect vapour absorption refrigeration system at 10°C of evaporator temperature cascaded with three stages vapour compression refrigeration system using R1234yf in medium temperature cycle at evaporator temperature =-50°C, HFO-1336mzz(Z) in intermediate temperature cycle at evaporator temperature = -95°C and using R-1225ye(Z) in lower temperature cycle at evaporator temperature = -135°C.

System-14

Li/Br-H₂O half effect vapour absorption refrigeration system at 10°C of evaporator temperature cascaded with three stages vapour compression refrigeration system using R1234yf in medium temperature cycle at evaporator temperature =-50°C, R-1225ye(Z) in intermediate temperature cycle at evaporator temperature = -95°C and using HFO-1336mzz(Z) in lower temperature cycle at evaporator temperature = -135°C.

System-15

Li/Br-H₂O half effect vapour absorption refrigeration system at 10°C of evaporator temperature cascaded with three stages vapour compression refrigeration system using R-1225ye(Z) in medium temperature cycle at evaporator temperature =-50°C, R1233zd(E) in intermediate temperature cycle at evaporator temperature = -95°C and using HFO-1336mzz(Z) in lower temperature cycle at evaporator temperature = -135°C.

Following numerical values have been used for validation of code developed for Integrated half effect Li/Br-H₂O VARS using ecofriendly refrigerants.

- Generator temperature= 80°C
- Absorber temperature=35°C
- Condenser temperature $=35^{\circ}C$
- VARS evaporator temperature=10°C
- load on VARS Evaporator= 175 kW
- Ambient (dead state) temperature=25°C
- Temperature overlapping in MTC = 10°C
- VCR evaporator temperature of MTC=-30°C
- VCR evaporator temperature of ITC=-75°C

- VCR evaporator temperature of LTC=-135°C
- VCR compressor efficiency of MTC= 80%
- VCR compressor efficiency of ITC= 80%
- VCR compressor efficiency of MTC= 80%
- Ambient (dead state) temperature=25°C

Thermodynamic first law energy performances of integrated half effect Li/Br-H₂O VARS system cascaded with three stages vapour compression cascaded systems shown in table 8(a) respectively. It was observed that system-6 has highest thermodynamic performances than other integrated systems.

However, first law thermodynamic performance improvement is higher of system-5 and lowest for system-7. Similarly, Thermodynamic first law exergy performances of integrated half effect Li/Br-H₂O VARS system cascaded with three stages vapour compression cascaded systems shown in table-8(b) respectively. It was observed that system-8 has lowest thermodynamic exergetic performances. Similarly, second law thermodynamic exergetic performance improvement is less of system-8 as compared to other systems at -75°C of evaporator temperature. The exergy destruction ratio in these systems are presented in table-8(c). It is seen that system 5 has maximum percentage in the exergy decrement

Table-8(a): Thermodynamic first law (energetic) Performances of Integrated half effect Li/Br-H2O VARS using ecofriendly refrigerants at evaporator temperature=135°C

Integrated system	COP_VARS	COP MTC	COP _ITC	COP_	%Improvement	%Improvement	%Improvement
				L TC	in COP _MTC	in COP _ITC	in COP _ LTC
System-1	0.4278	0.6865	0.8586	0.8871	60.45	100.7	107.3
System-2	0.4278	0.6865	0.8568	0.8927	60.45	100.2	108.6
System-3	0.4278	0.6848	0.8569	0.8857	60.06	100.3	107.0
System-4	0.4278	0.6848	0.8551	0.8912	60.06	99.86	108.30
System-5	0.4278	0.6794	0.8516	0.8811	58.80	99.05	105.9
System-6	0.4278	0.6794	0.8498	0.8866	58.80	98.63	107.2
System-7	0.4278	0.6794	0.8516	0.8811	58.80	99.05	105.9
System-8	0.4278	0.6794	0.8498	0.8866	58.80	98.6	107.2
System-9	0.4278	0.6747	0.8470	0.877	57.70	97.96	105.0
System-10	0.4278	0.6747	0.8452	0.8825	57.70	97.54	106.3

Table-8(b): Thermodynamic second law (exergetic) Performances of Integrated half effect Li/Br-H2O VARS using ecofriendly refrigerants at evaporator temperature=-135°C

Integrated	Evergetic	Evergetic	Evergetic	Evergetic	%Improvement	%Improvement in	%Improvement in
megrateu	Exergenc	Exergenc	Exergenc	Excigence	³⁰ Improvement		
system	Efficiency	Efficiency	Efficiency	Efficiency	in Exergetic Eff.	Exergetic Efficiency	Exergetic Efficiency
	(ETA_vars)	(ETA_mtc)	(ETA_itc)	(ETA_ltc)	(ETA_mtc)	(ETA_itc)	(ETA_ltc)
System-1	0.1382	0.2894	0.3935	0.4298	109.4	184.7	211.0
System-2	0.1382	0.2894	0.3907	0.4436	109.4	182.7	220.9
System-3	0.1382	0.2872	0.3924	0.4290	107.8	183.9	210.4
System-4	0.1382	0.2872	0.3896	0.4428	107.8	181.9	220.3
System-5	0.1382	0.2803	0.3888	0.4265	102.8	181.3	208.6
System-6	0.1382	0.2803	0.3861	0.4402	102.8	179.3	218.4
System-7	0.1382	0.2803	0.3888	0.4265	102.8	181.3	208.6
System-8	0.1382	0.2803	0.3861	0.4402	102.8	179.3	218.4
System-9	0.1382	0.2743	0.3857	0.4243	98.43	179.10	207.0
System-10	0.1382	0.2743	0.3830	0.4378	98.43	177.10	216.8

Table-8(c): Thermodynamic exergy destruction ratio of Integrated half effect Li/Br-H2O VARS at evaporator temperature=-135°C

Integrated system	EDR_vars	EDR_mtc	EDR_ITC	EDR_	% decrement	% decrement	% decrement in
				L TC	in EDR_MTC	in EDR_ITC	EDR_LTC
System-1	6.235	2.455	1.541	1.327	-60.62	-75.28	-78.72
System-2	6.235	2.455	1.56	1.254	-60.62	-74.99	-79.88
System-3	6.235	2.482	1.549	1.331	-60.20	-75.16	-78.66
System-4	6.235	2.482	1.567	1.258	-60.70	-74.87	-79.82
System-5	6.235	2.568	1.572	1.345	-58.81	-74.79	-78.43
System-6	6.235	2.568	1.590	1.272	-58.81	-74.49	-79.60
System-7	6.235	2.568	1.572	1.345	-58.81	-74.79	-78.43
System-8	6.235	2.568	1.59	1.272	-58.81	-74.49	-79.6
System-9	6.235	2.646	1.593	1.357	-57.56	-74.46	-78.24
System-10	6.235	2.646	1.611	1.284	-57.56	-74.16	-79.41

efficiency of hulfeffect Libi-1120 VARS								
Generator temp(°C)	VAR	EDR	Exergetic					
	COP		Efficiency					
65	0.4380	4.367	0.1186					
70	0.4343	5.0	0.1666					
75	0.4309	5.624	0.1510					
80	0.4278	6.235	0.1382					
85	0.4251	6.832	0.1277					
90	0.4227	7.416	0.1188					

Table-9: Thermodynamic energy efficiency (COP) and exergetic efficiency of halfeffect Li/Br-H₂O VARS

The effect of generator temperature with first law (energy) efficiency (COP) and second law (exergetic) efficiency is shown in table-9. It is seen from table as generator temperature is increasing first law(energy) efficiency and second law (exergetic) efficiency is decreasing while exergy destruction ratio is increasing.

The effect of generator temperature with first law (energy) efficiency (COP) and second law (exergetic) efficiency is shown in table-10. It is seen that as condenser temperature is increasing first law(energy) efficiency and second law (exergetic) efficiency is decreasing while exergy destruction ratio is increasing.

Table-10: Effect of condenser temperature on thermodynamic energy efficiency (COP) and exergetic efficiency of half effect Li/Br-H₂O VARS

Condenser	VAR	EDR	Exergetic
Temp (°C)	COP		Efficiency
25	0.4380	4.367	0.1186
30	0.4343	5.0	0.1666
35	0.4309	5.624	0.1510
40	0.4278	6.235	0.1382
45	0.4251	6.832	0.1277
50	0.4227	7.416	0.1188

Table-11: Effect of evaporator temperature on thermodynamic energy efficiency (COP) and exergetic efficiency of half effect Li/Br-H₂O VARS

\mathcal{J}	3	J - J - J - JJ	
Evaporator temp(°C)	VAR	EDR	Exergetic
	COP		Efficiency
2	0.4380	4.367	0.1186
4	0.4343	5.0	0.1666
5	0.4309	5.624	0.1510
6	0.4278	6.235	0.1382
8	0.4251	6.832	0.1277
10	0.4227	7.416	0.1188

Similarly, the effect of VARS evaporator temperature with first law (energy) efficiency (COP) and second law (exergetic) efficiency is shown in table-11. It is seen that as evaporator temperature is increasing first law(energy) efficiency is increasing and second law (exergetic) efficiency is decreasing while exergy destruction ratio is increasing. Similarly, the effect of VARS evaporator temperature with first law (energy) efficiency (COP) and second law (exergetic) efficiency is shown in table-12. It is seen that as absorber temperature is increasing first law(energy) efficiency is decreasing and second law (exergetic) efficiency is also decreasing while exergy destruction ratio is increasing.

efficiency (COF) and exergence efficiency of half effect Lt/Br-H2O VARS			
Absorber temp	VAR	EDR	Exergetic
(°C)	COP		Efficiency
25	0.4380	4.367	0.1186
30	0.4343	5.0	0.1666
35	0.4309	5.624	0.1510
40	0.4278	6.235	0.1382
45	0.4251	6.832	0.1277
50	0.4227	7.416	0.1188

Table-12: Effect of absorber temperature on thermodynamic energy efficiency (COP) and exergetic efficiency of half effect Li/Br-H₂O VARS

6. Conclusions

A theoretical analysis has been presented to predict the performance of cascaded half effect $\text{Li/Br-H}_2\text{O}$ using energy and exergy principles. A half effect H_2O -LiBr VARS is coupled to the VCRS using HFO refrigerant through the cascade heat-exchanger by the three times time. These systems have its utilities in ultra-low evaporator temperatures ranging from ice manufacturing to frozen food and ultra-low temperature applications. Following conclusions were drawn from present investigation

- In single cascading with VARS, at low temperature applications up to -30°C evaporator temperature, HFO ecofriendly refrigerants (R-1234ze(Z), R-1234ze(E), R1233zd(E), R-1243zf, R1225ye(Z), HFO-1336mzz(Z) and R1234yf will be certainly useful for replacing HFC, HCFC and CFC refrigerants, while R1224yd(Z) will be suitable for -10°C above evaporator temperature for replacing R134a.
- In single cascading with VARS, at low temperature applications up to -50°C evaporator temperature, HFO ecofriendly refrigerants (R1225ye(Z), R1233zd(E), HFO-1336mzz(Z) and R1234yf will be certainly useful for replacing HFC, HCFC and CFC refrigerants.
- In the double cascading with VARS, at low temperature applications up to -75°C evaporator temperature, HFO ecofriendly refrigerants (R1225ye(Z), R1233zd(E), HFO-1336mzz(Z) will be certainly useful for replacing HFC, HCFC and CFC refrigerants and can be better than replacing R32, R245fa and R134a
- In the triple cascading with VARS, at ultra-low temperature applications up to -150°C evaporator temperature, HFO ecofriendly refrigerants (R1225ye(Z), HFO-1336mzz(Z) will be certainly useful for replacingR32, and, HCFC and CFC refrigerants.

References

- R.S. Mishra [2015]Vapour Compression Refrigeration Technology for Sustainable Development, International Journal of Advance Research and Innovation, ISSN 2347 – 3258, Volume 3, Issue 4, page-647-652.
- [2] R.S. Mishra [2019] Performance evaluation of solar assisted half effect Li/Br vapour absorption refrigeration system cascaded with vapour compression refrigeration system using eco-friendly refrigerants, International Journal of Advance Research and Innovation, ISSN 2347 – 3258, Volume 7 Issue 2 (2019) 156-161
- [3] Dincer, I.; Rosen, M.A. Thermodynamic aspects of renewables and sustainable development. Renew. Sustain. Energy Rev. 2005, 9, 169–189

- [4] Dincer, I.; Rosen, M.A. A worldwide perspective on energy, environment, and sustainable development. Int. J. Energy Res. 1998, 22, 1305–1321
- [5] Dincer, I. The role of exergy in energy policy making. Energy Policy 2002, 30, 137–149.
- [6] R.S. Mishra [2019] Comparison of half effect absorption-compression cascaded refrigeration system using thermodynamic (energy-exergy) analysis, International Journal of Research in Engineering and Innovation Vol-3, Issue-1, 6-11
- [7] Vaibhav Jain et.al. [2015] Performance improvement of vapor compression-absorption cascaded refrigeration system using ejector, Conference: Proceedings of the 23rd National and first International ISHMT-ASTFE Heat and Mass Transfer Conference, at : Thiruvananthapuram, India.
- [8] M Dixit et.al.[2016] Energy and exergy analysis of absorptioncompression cascade refrigeration system, journal of thermal Engineering, ISSN 2148-7847, Vol-2, Special Issue 5, pp. 995-1006.
- [9] D. Colorado, W. Rivera[2015], Performance comparison between a conventional vapor compression and compression-absorption singlestage and double-stage systems used for refrigeration, Applied. Thermal . Engineering, Vol-87, pp. 273-28
- [10] Gebreslassie, B.H.; Medrano, M.; Boer, D. Exergy analysis of multieffect water-LiBr absorption systems: From half to triple effect. Renew. Energy 2010, 35, 1773–1782.
- [11] Bereche, R.P.; Palomino, R.G.; Nebra, S.A.[2009] Thermoeconomic analysis of a single and double-effect LiBr/H₂O absorption refrigeration system. Int. J. Thermodyn., 12, 89–96
- [12] Morosuk, T.; Tsatsaronis, G. A new approach to the exergy analysis of absorption refrigeration machines. Energy 2008, 33, 890–907

- [13] Cimsit, I.T. Ozturk [2012], Analysis of compression-absorption cascade refrigeration cycles, Applied. Thermal. Engineering., 40 (2012), pp. 311-317
- [14] S. Garimella, A.M. Brown, A.K. NagavarapuWaste heat driven absorption/vapor compression cascade refrigeration system for megawatt scale, high-flux, low-temperature cooling, Int. J. Refrigeration, 34 (2011), pp. 1176-1185.
- [15] J.C.V. Chinnappa, M.R. Crees, S.S. Murthy, K. Srinivasan, Solar-assisted vaporcompression/absorption cascaded air-conditioning systems, Sol. Energy 50 (5)(1993) 453–458.
- [16] Gebreslassie, B.H.; Medrano, M.; Mendes, F.; Boer, D. Optimum heat exchanger area estimation using coefficients of structural bonds: Application to an absorption chiller. Int. J. Refrig. 2010, 33, 529–537.
- [17] Ghani, M.U.; Zaman, M.; Khan, I. Thermodynamic modeling and optimization of double effect series flow LiBr-H₂O vapor absorption chiller. In Proceedings of the ICET 2016 International Conference on Emerging Technologies, Singapore, 7–8 January 2016.
- [18] Kilic, M.; Kaynakli, O. Second law-based thermodynamic analysis of water-lithium bromide absorption refrigeration system. Energy 2007, 32, 1505–1512
- [19] Omer, A.M. Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 2008, 12, 2265–2300
- [20] Radhey Shyam Mishra [2019] Single and multiple cascading of VCRS in NH₃H₂O vapour absorption refrigeration systems for improving thermodynamic (energy-exergy) performances using five ecofriendly new HFOs and other low GWP refrigerants for replacing R134a, International Journal of Research in Engineering and Innovation Vol-3, Issue-1 (2019), 1-5.

Cite this article as: R.S. Mishra, Thermal performance evaluation of half effect Li/Br-H₂O vapour absorption refrigeration system with single & multi cascaded vapour compression refrigeration systems using HFO refrigerants for replacing HFC-134a, International journal of research in engineering and innovation (IJREI), vol 5, issue 1 (2020), 29-41. https://doi.org/10.36037/IJREI.2021.5104.