

International Journal of Research in Engineering and Innovation

(IJREI)

journal home page: http://www.ijrei.com

LURREI Distriction Journal of Research in Degiseering and NOI-5, ISSUE-2 OU-5, ISSUE-2 DIST. 2456 4934

ISSN (Online): 2456-6934

ORIGNAL ARTICLE

Thermodynamic performances of cascaded vapour compression refrigeration systems using HFO refrigerants for ultra-low temperature applications

R. S. Mishra

Department of Mechanical Engineering, Delhi Technological University Delhi, India

Article Information

Received: 02 November 2020 Revised: 24 December 2020 Accepted: 27 December 2020 Available online: 5 January 2021

Keywords:

HFO refrigerants; Thermodynamic performance evaluation; Energy-Exergy Evaluation; Compression-Absorption; Cascade system;

Abstract

This work compares the thermodynamic performances of ultra-low GWP eight HFO refrigerants using mathematical modeling with the input design parameters of evaporator and condenser temperatures variations and variations in temperature overlapping between cascade condenser and cascade evaporator, and computed compressors work input, the coefficient of performance (COP), exergy destruction Ratio and exergetic efficiency, of HFO refrigerants which were examined for comparative performance analysis with R134a taken as the baseline refrigerant. The effect of temperature overlapping in cascaded condenser and subcooling of high temperature condenser was studied in detail. It's found that cascaded (energy&exergy) performances improved by increasing sub cooling in the condenser. The temperature overlapping was also observed and found that when overlapping temperature increases, thermodynamic (Energy-exergy) performances are decreases. Therefore, this research will help in finding alternative HFO refrigerants for the next generation of refrigerants for a sustainable environment.

1. Introduction

Global warming is one of most cruel environmental concerns that our planet is facing today. One of its causes is the previous generation of refrigerant gases and carbon dioxide emissions. Upon release, these gases remain in the atmosphere for longer periods and contribute towards global warming. The severity of these gases' environment impacts is determined by their life cycle analysis (LCA) and the conversion efficiency of refrigeration systems. Due to global warming, Earth's temperature is expected rise over the period of the next 100 years. This will affect agriculture, which will cause in heavy rainfalls, additional heat waves, and sea level can rise of by the next century. Therefore, the member countries of the Montreal

Corresponding author: R.S. Mishra Email Address: hod.mechanical.rsm@dtu.ac.in https://doi.org/10.36037/IJREI.2021.5201 Protocol in 2016, agreed to phase down hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons (HCFCs) to reduce net earth warming by 0.5 °C by the year 2100 and to protect the ozone layer. Chlorofluorocarbons (CFCs) and HCFCs were already depleting the ozone layer, so these were wiped out after the Montreal Protocol and the Kyoto Protocol, respectively [1-4]. Presently, the different refrigerants being used for domestic, automotive, commercial refrigeration and air-conditioning systems are mostly HFCs, i.e., R134a, R23, R404A, R407A, R410A, R125 and R507A. Though HFCs have zero ozone depletion potential (ODP), these still possess large global warming potential (GWP) values. R134a has a GWP of 1430, R23 has a GWP of 14800, R404A has a GWP of 3922, R410A has a GWP of 2088, R407A has a GWP of 2107, and R507A has

a GWP of 3985 [5]. The HCFC refrigerant (R22) was being used in the earlier generation of commercial refrigeration systems, e.g., centrifugal chillers and central air conditioning systems that are used in buildings, and the current generation is using R134a and R123. As per the safety classifications of refrigerants, R22 comes under the category of A1: very low toxicity and no flame propagation, but it has large GWP of 1810. R134a is a globally accepted refrigerant for various types of refrigeration systems. It has a superior safety rating compared with A1, and it has a low toxicity, no flame propagation, and a GWP around 1430. It is also an HFC and will be phased down 100% by 2034. R123 is used in chillers due to its high thermodynamic efficiency and reduced possibility of leakages, but it is HCFC compound with a B1 classification, and it has been a cause of tumors in livers and pancreases due to long term inhalation and hence, it is expected to be phased out by 2025. Due to the large GWP values of the earlier generation of refrigerants, the USA's Environmental Protection Agency (EPA) has decided to systematically phase out HFCs to 50% by 2025, 80% by 2030, and 100% by 2040 [6-11].

Therefore, it is necessary to find substitute refrigerant for the sustainability of the environment that should have a low GWP for minimum environmental impact and was found that as a drop-in replacement of R134a on vapor compression refrigeration (VCRC) with a variable speed compressor and input parameters of evaporator and condenser temperature. As compared to R404a, the HFC-134a gives 3% to 5% higher first law efficiency(COP). Similarly, R410a and R407c also have1% to 1.5% lower first law efficiency than using R134a [12-16]. The results showed that with the R1234vf decreased to 5 to 10% the first law (energy) efficiency (COP) and by using R1234ze(Z) the energy efficiency (COP) was increased from 3 to 7%. The thermodynamic performances of vapour compression refrigeration systems using R152a are 2 to 6% higher than using R134a. It was observed that the input power of R152a was 7.724%, 7.72% and 7.752% less than that of R134a, the COP of system using R1224yd(Z) a showed a 2.35%, 3.15% and 4.95% improvement at compressor speeds of 2000, 2500 and 3000 rpms, respectively, as compared to R134a [17-20].

The HFO-1234yf and HFO-1234ze(E) and R1234ze(Z), R1243zf, R1224yd(Z), R1225ye(Z), R1233zd(E), HFO-1336mzz(Z) were analyzed as potential replacements for R134a and the results showed that R1234ze(E) and R1243zf showed the closest performance to R134a. compared to R1234ze(E) [21-26]. The suitability of eight HFO refrigerants such as HFO-1234yf and HFO-1234ze(E), as potential alternatives to R134a was studied by using the EES software, which showed that these refrigerants improved performance without significantly increasing the GWP [27-30]. The use of R1233zd(E)', R1224yd(Z) and R1234ze(Z) in terms of first law efficiency to be 0.9%, was better than R245fa

The first law (energy) performance in terms of coefficient of

performance (CO) and second law (exergy) performance of ultra-low GWP refrigerants as drop-in replacements was evaluated by varying the value of the evaporating and condensing temperatures of a VCRC-based refrigeration system have been studied in details in simple vapour compression refrigeration systems, cascaded refrigeration systems for ultralow temperature applications.

2. Results and Discussion

2.1 Performances of vapour compression refrigeration systems using HFO refrigerants

Thermodynamic first law (Energy) performance (i.e. coefficient of performance) of HFO ecofriendly refrigerants using heat exchanger for condenser temperature of 50°C and -10°C, evaporator temperature for 3.5167 kW cooling capacity shown in table-1(a) respectively It was found that the HFO-1234ze(Z) refrigerant gives highest COP. Similarly, HFO R1224yd(Z) refrigerant can be used to evaporator temperature above -10°C. the second best ultra-low refrigerant is R1233zd(E) gives slightly low thermodynamic energy-exergy performances than R1234ze(Z). Although first law energy performance (COP) using HFO-1336mzz(Z) gives nearly same COP as compared to R1224yd(Z). The thermodynamic energy performance using R1243zf is nearly similar as compared to performance R1234ze(E). The thermodynamic energy performance (COP) of R1234ze(Z), R1224yd(Z), R-1233zd(E) and HFO-1336mzz(Z) is higher than HFC-134a. Although energy performance (COP) of R1234ze(E), R1243zf and R1225ye(Z) is slightly lower than HFC-134a. HFO-1234yf gives lowest thermodynamic energy performance(COP). Similarly work required to run compressor using R 1234yf is highest which consumed high electrical energy. While R1234ze(Z) required lower electrical power consumption. It was found that R1234ze(Z), R1234ze(Z) and R1243zf can be only used -30°C above evaporator temperature which can replace HFC refrigerants in coming future. Although R1234yf has low thermodynamic energy performance as compared to HFC-134a, which can be used evaporator temperature above -50°C. The second law (exergy) performance using R1234ze(Z) is highest. The second law (exergetic) efficiency using R1233zd(E) is slightly lower than R1234ze(Z) but higher than HFO-1336mzz(Z). Similarly, exergetic efficiency using R1224yd(Z) is higher than R134a while using R1234yf gives lowest second law (exergetic) performance. Similarly, exergy destruction ratio is highest. The exergy destruction in the various components of vapour compression system are shown in Table-1(b) respectively. It was found that maximum exergy destruction occurred the condenser which can be reduced by changing proper design of condensing heat exchanger. It was found that by using R1234yf, the mass flow rate of refrigerant in the system is increased.

E C' II E C'	D ' 1			compressors efficie	~		NGDG
Ecofriendly Refrigerants	First law	Exergy	VCRS	Work required to	Mass flow rate	Exergy	VCRS
	Efficiency	Destruction Ratio	Exergetic	run Compressor	of refrigerant in	Destruction Ratio	Second law
	(COP_vcrs	(EDR_system)	Efficiency	W _{Comp} "kW"	VCRS(kg/sec)	(EDR_vcrs)	Efficiency
R1234ze(Z)	2.851	1.563	0.3902	1.234	0.02248	1.628	0.3806
R1234ze(E)	2.589	1.645	0.3543	1.359	0.03081	1.905	0.3443
R1224yd(Z)	2.762	1.822	0.3780	1.273	0.02982	1.710	0.3690
R1243zf	2.589	1.593	0.3543	1.359	0.02766	1.888	0.3463
R1233zd(E)	2.818	1.863	0.3857	1.248	0.02482	1.657	0.3763
R1225ye(Z)	2.417	1.788	0.3493	1.378	0.03633	1.928	0.3415
HFO-1336mzz(Z)	2.715	1.69	0.3717	1.295	0.02986	1.756	0.3629
R1234yf	2.252	2.023	0.3308	1.455	0.03726	2.088	0.3239
R134a	2.621	1.788	0.3587	1.342	0.02732	1.854	0.3504

Table-1(a) Effect of ecofriendly refrigerants system performances of simple vapour compression refrigeration systems for $(T_Cond = 50^{\circ}C, and T Evap = -10^{\circ}C, isentropic compressors efficiency = 80\%$

Table-1(b) Effect of ecofriendly refrigerants system performances of vapour compression refrigeration systems for $(T_Cond = 50^{\circ}C, and T_Evap = -10^{\circ}C, isentropic compressors efficiency = 80\%.$

Ecofriendly Refrigerants	First law	Exergy	% Exergy	% Exergy	% Exergy	Second law	Mass flow	Work required to
	Efficiency	Destructio	Destruction	Destruction	Destruction	(exergetic)	rate of	run Compressor
	(COP VCRS)	n Ratio	in comp.	in cond.	in valve.	Efficiency	refrigerants in	W _{CompHTC} "kW"
		(EDR _{VCRS})					VCRS	
R1234ze(Z)	2.851	1.563	17.92	30.53	13.8	0.3902	0.02248	1.234
R1234ze(E)	2.589	1.645	18.37	28.37	19.54	0.3543	0.03081	1.359
R1224yd(Z)	2.762	1.822	18.39	29.3	15.73	0.3780	0.02982	1.273
R1243zf	2.589	1.593	18.15	28.37	19.2	0.3543	0.02766	1.359
R1233zd(E)	2.818	1.863	18.24	29.88	14.56	0.3857	0.02482	1.248
R1225ye(Z)	2.252	1.788	18.33	27.89	19.99	0.3493	0.03633	1.378
HFO1336mzz(Z)	2.715	1.69	18.44	28.85	16.74	0.3717	0.02986	1.295
R1234yf	2.417	2.023	18.40	26.85	22.74	0.3308	0.03726	1.455
R134a	2.621	1.788	17.82	29.15	18.34	0.3587	0.02732	1.342

Thermodynamic first law (Energy) performance (i.e. coefficient of performance) of HFO ecofriendly refrigerants using heat exchanger for condenser temperature of 50°C and -30°C, evaporator temperature for 3.5167 kW cooling capacity shown in table-2(a) respectively It was found that the HFO-1234ze(Z) refrigerant gives highest COP. The second best ultra-low refrigerant is R1233zd(E) gives slightly low thermodynamic energy-exergy performances than R1234ze(Z). Although first law energy performance (COP) using HFO-1336mzz(Z) gives higher COP as compared to R1225ve(Z). The thermodynamic energy performance using R1243zf is nearly similar as compared to performance R1234ze(E). The thermodynamic energy performance (COP) of R1234ze(Z), R-1233zd(E) and HFO-1336mzz(Z) is higher than HFC-134a. Although energy performance (COP) of R1234ze(E), R1243zf and R1225ye(Z) is slightly lower than HFC-134a. HFO-1234yf gives lowest thermodynamic energy performance(COP). Similarly work required to run compressor using R 1234yf is highest which consumed high electrical energy. While R1234ze(Z) required

lower electrical power consumption. It was found that R1234ze(Z), R1234ze(Z) and R1243zf can be only used -30°C above evaporator temperature which can replace HFC refrigerants in coming future. Although R1234yf has low thermodynamic energy performance as compared to HFC-134a , which can be used evaporator temperature above -50°C.

The second law (exergy) performance using R1234ze(Z) is highest. The second law (exergetic) efficiency using R1233zd(E) is slightly lower than R1234ze(Z) but higher than HFO-1336mzz(Z). Similarly, exergetic efficiency using R1233zd(E) is higher than R134a while using R1234yf gives lowest second law (exergetic) performance. Similarly, exergy destruction ratio is highest. The exergy destruction in the various components of vapour compression system are shown in Table-2(b) respectively. It was found that maximum exergy destruction occurred the condenser which can be reduced by changing proper design of condensing heat exchanger. It was found that by using R1234yf, the mass flow rate of refrigerant in the system is increased.

Ecofriendly	First law	(EDR _{system})	VCRS	Work required	Mass flow	(EDR_vcrs)	VCRS	Work
Refrigerants	Efficiency		Exergetic	to run	rate of		Second	required to
	(COP_vcrs		Eff	Compressor	refrigerants		law Eff	run Comp
				WCompHTC"kW	in VCRS			WCompHTC"k
					(kg/sec)			W"
R1234ze(Z)	1.757	1.414	0.4142	1.957	0.02462	1.457	0.4071	1.957
R1234ze(E)	1.564	1.775	0.3604	2.249	0.03518	1.833	0.3530	2.249
R1243zf	1.585	1.738	0.3653	2.219	0.03098	1.780	0.3597	2.219
R1233zd(E)	1.757	1.470	0.4049	2.002	0.0276	1.512	0.3981	2.022
R1225ye(Z)	1.546	1.806	0.3564	2.274	0.04125	1.848	0.3511	2.274
HFO-1336mzz(Z)	1.650	1.630	0.3802	2.132	0.03424	1.673	0.3741	2.132
R1234yf	1.429	2.037	0.3293	2.461	0.04339	2.088	0.3248	2.461

Table-2(a) Effect of refrigerants system performances of VCRS for (T_Cond = 50°C, and T_Evap = -30°C, isentropic compressors efficiency = 80%.

Table-2(b) Effect of refrigerants system performances of VCRS for (T_Cond = 50°C, and T_Evap = -30°C, isentropic compressors efficiency = 80%.

Ecofriendly	First law	Exergy	% Exergy	% Exergy	% Exergy	Second law	Mass flow	Work required
Refrigerants	Efficiency	Destruction	Destructio	Destructio	Destructio	Efficiency	rate of	to run
	(COP_vcrs	Ratio	n in comp.	n in cond.	n in valve		refrigerants	Compressor
		(EDR _{VCRS})					in VCRS	WCompHTC"kW"
R1234ze(Z)	1.757	1.414	17.47	22.92	19.07	0.4071	0.02462	1.957
R1234ze(E)	1.564	1.775	18.22	20.26	26.53	0.3530	0.03518	2.249
R1243zf	1.585	1.738	17.87	20.85	25.53	0.3597	0.03098	2.219
R1233zd(E)	1.757	1.470	17.9	21.98	20.49	0.3981	0.0276	2.002
R1225ye(Z)	1.546	1.806	18.13	20.22	26.76	0.3511	0.04125	2.274
HFO1336mzz(Z)	1.65	1.630	18.44	20.58	23.77	0.3741	0.03424	2.132
R1234yf	1.429	2.037	18.31	19.81	30.27	0.3248	0.04339	2.461

2.2 Performances of two cascaded vapour compression refrigeration system using HFO refrigerants

The following input data have been used for computing thermodynamic performances of cascaded vapour compression refrigeration system using ecofriendly ultra-low GWP refrigerants in lower temperature cycle and high temperature cycles.

S.No	Input Data	Numerical value
1	Condenser temperature in the	55℃
	high temperature cycle	
2	Sub cooling	0,5,10,15,20,25
3	Temperature overlapping	0,5,10,15,20
4	Cooling load on low temperature	35.167
	evaporator (kW)	
5	Isentropic efficiency of high	80%
	temperature compressor	
6	Isentropic efficiency of	80%
	lowtemperature compressor	
7	HFO refrigerants used in low	R1233zd(E), HFO-
	temperature cycle (LTC)	1336mzz(Z) and
		R1225ye(Z)

The performance of cascade vapour compression refrigeration system is shown in table-3(a) to 3(b) respectively.

Table-3(a) and Table-3(b) , show the effect of ecofriendly refrigerants in high temperature circuit on the system performances of cascaded vapour compression refrigeration system using , R1225ye(Z) and HFO1336mzz(Z) in low

temperature cycle evaporator (T_Evap_LTC) at = -75°C and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for evaporator temperature (T_Evap_HTC) at -30°C, and isentropic HTC compressors efficiency =80%, LTC compressors efficiency =80%, Cooling load =35.167 kW, temperature overlapping=10°C) it was found that best thermodynamic performances occurred by using R1233zd(E) in LTC and R1234ze(Z) but performances are nearly similar at this lower temperature.

Table-4(a) and Table-4(b), show the effect of ecofriendly refrigerants in high temperature circuit on the system performances of cascaded vapour compression refrigeration system using , R1225ye(Z) and HFO1336mzz(Z) in low temperature cycle evaporator (T_Evap_LTC) at = -75° C and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for evaporator temperature (T Evap HTC) at -10°C, and isentropic HTC compressors efficiency =80%, LTC compressors efficiency =80%, Cooling load =35.167 kW, temperature overlapping=10°C) it was found that best thermodynamic performances occurred by using R1233zd(E) in LTC and R1234ze(Z) but performances are nearly similar at this lower temperature. Table-5(a) to Table-5(c), show the effect of ecofriendly refrigerants in high temperature circuit on the system performances of cascaded vapour compression refrigeration system using , R1225ye(Z) and HFO1336mzz(Z) in low temperature cycle evaporator (T_Evap_LTC) at = -75° C and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for evaporator temperature (T_Evap HTC) at

10°C, and isentropic HTC compressors efficiency =80%, LTC compressors efficiency =80%, Cooling load =35.167 kW, temperature overlapping=10°C) it was found that best

thermodynamic performances occurred by using R1233zd(E) in LTC and R1234ze(Z) but performances are nearly similar at this lower temperature.

Table-3(a) Effect of ecofriendly refrigerants on the system performances of cascaded VCRS using R-1225ye(Z) in low temperature cycle evaporator $(T_{_Evap_LTC})$ at = -75°C and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for $T_{_Evap_HTC}$) at -30°C, $(T_{_Cond} = 50°C)$, and subcooling of condenser at 45°C and isentropic compressors efficiency =80%. Cooling load =35.167 kW, temperature overlapping=10°C).

	nuenser ur 45		1	s ejjiciency .	-0070, C00111	<u>g</u> 10uu =55.107	KW, temperut	are overiup	ping=10 C).
Ecofriendly	First law	HTC	HTC EDR	Cascade	Cascade	Cascade	First law	Cascade	Second law
Refrigerants	Efficiency	Exergetic		COP	Exergetic	EDR	Efficiency	COP	Efficiency
-	(COP _{HTC})	Efficiency			Efficiency		(COP_ltc)		
R1234ze(Z)	1.634	2.119	0.3764	0.5645	0.3838	1.606	1.391	0.6944	0.3207
R1234ze(E)	1.386	2.642	0.3193	0.5103	0.3469	1.883	1.391	0.6584	0.2747
R1243zf	1.408	2.572	0.3244	0.5154	0.3503	1.854	1.391	0.6619	0.2799
R1233zd(E)	1.593	2.192	0.3672	0.5562	0.3781	1.645	1.391	0.6891	0.3133
HFO1336mzz(Z)	1.481	2.414	0.3412	0.5319	0.3616	1.766	1.391	0.6731	0.2929
R1234yf	1.242	3.009	0.2863	0.4755	0.3232	2.094	1.391	0.6334	0.2494

Table-3(b) Effect of ecofriendly refrigerants on the system performances of cascaded VCRS using HFO-1336mzz(Z) in low temperature cycle evaporator (T_Evap_LTC) at = -75°C and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for T_Evap_HTC) at -30°C, ($T_cond=50°C$), and isentropic HTC<C compressors efficiency =80%. Cooling load =35,167 kW, temperature overlapping=10°C).

Ecofriendly	First law	HTC	HTC	Cascade	Cascade	Cascade	First law	Cascad	Second
Refrigerants	Efficiency	Exergetic	EDR	COP	Exergetic	EDR	Efficiency	e COP	law
-	(COP_htc)	Efficiency			Efficiency		(COP_LTC)		Efficiency
R1234ze(Z)	1.634	0.3764	2.119	0.5542	0.6884	1.654	1.352	0.6884	0.3207
R1234ze(E)	1.386	0.3193	2.62	0.5013	0.6520	1.935	1.352	0.6520	0.2746
R1243zf	1.408	0.3244	2.572	0.5062	0.6556	1.906	1.352	0.6556	0.2799
R1233zd(E)	1.593	0.2973	2.192	0.5461	0.6830	1.694	1.352	0.6830	0.3133
R1225ye(Z)	1.366	0.3148	2.673	0.4968	0.6488	1.951	1.352	0.6488	0.2723
R1234yf	1.242	0.2863	3.009	0.4673	0.6268	2.148	1.352	0.6268	0.2494
R134a	1.441	0.3320	2.494	0.5136	06608	1.864	1.352	0.6608	0.2862

Table-4(a) Effect of ecofriendly refrigerants on the system performances of cascaded VCRS using R-1225ye(Z) in low temperature cycle evaporator (T_{Evap_LTC}) at = -95°C and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for T_{Evap_HTC}) at -30°C, $(T_{Cond} = 50°C)$ and subcooling of condenser at 45°C and isentropic compressors efficiency =80%, Cooling load =35.167 kW, temperature overlapping=10°C).

	5 5		1 1	50	2	U	-55.107 KW, temperut	11	0 ,
Ecofriendly	HTC First Law	HTC	LTC First	Second law	Cascade	Cascade	Cascade Exergy	HTC	LTC
Refrigerants	Efficiency	EDR	law	Efficiency	COP	Exergetic	Destruction	mc(t)	mc(t)
_	(COP _{HTC})		Efficiency	-		Efficiency	Ratio		
R1234ze(Z)	1.713	1.534	1.352	0.3947	0.6984	0.3873	1.582	0.4495	0.2534
R1234ze(E)	1.448	1.997	1.352	0.3336	0.6619	0.3502	1.856	0.6611	0.2534
R1243zf	1.472	1.941	1.352	0.3392	0.6656	0.3538	1.827	0.5802	0.2534
R-1225ye(Z)	1.669	2.041	1.352	0.3289	0.6587	0.3471	1.881	0.7775	0.2534
R1233zd(E)	1.427	1.60	1.352	0.3847	0.693	0.3815	1.621	0.5052	0.2534
R1234yf	1.295	2.350	1.352	0.2985	0.6366	0.3265	2.063	0.8325	0.2534
R134a	1.508	1.878	1.352	0.3475	0.6709	0.3591	1.785	0.5628	0.2534

Table-4(b) Effect of refrigerants on the system performances of cascaded VCRS using HFO-1336mzz(Z) in low temperature cycle evaporator at -95°C and following ultra-low GWP refrigerants in higher temperature cycle for $T_{Evap,HTC}$ at -30°C, ($T_{Cond}=50^{\circ}$ C), and subcooling of condenser at 45°C and isentropic HTC<C compressors efficiency =80%. Cooling load =35.167 kW, temperature overlapping=10°C).

45°C ana	45°C and isentropic H1C&L1C compressors efficiency =80%, Cooling load =35.10/ kw, temperature overlapping=10°C).										
Ecofriendly	HTC First Law	HTC	LTC First law	Second law	Cascade	Cascade	Cascad	HTC	LTC		
Refrigerants	Efficiency	EDR	Efficiency	Efficiency	COP	Exergetic	e EDR	mc(t)	mc(t)		
-	(COPhtc)					Efficiency					
R1234ze(Z)	1.713	1.534	1.391	0.3947	0.7043	0.3946	1.534	0.4442	0.2802		
R1234ze(E)	1.448	1.997	1.391	0.3336	0.6681	0.3566	1.805	0.6533	0.2802		
R1243zf	1.472	1.941	1.391	0.3392	0.6718	0.3602	1.776	0.5732	0.2802		
R1233zd(E)	1.669	2.041	1.391	0.3847	0.6989	0.3887	1.573	0.4993	0.2802		
HFO1336mzz(Z)	1.547	1.60	1.391	0.3565	0.6827	0.3714	1.692	0.6276	0.2802		
R1234yf	1.295	2.350	1.391	0.2985	0.6431	0.3322	2.010	0.8227	0.2802		
R134a	1.508	1.878	1.391	0.3475	0.6771	0.3656	1.735	0.5562	0.2802		

Table-5(a) Effect of ecofriendly refrigerants on the system performances of cascaded vapour compression refrigeration system using R-1233ze(E) in
low temperature cycle evaporator (T_Evap_{LTC}) at = -75°C and following ecofriendly ultra low GWP refrigerants in higher temperature cycle for
T_{Even} HTC) at -10°C (T cond = 50°C) and isentropic compressors efficiency = 80% Cooling load = 35.167 kW, temperature overlapping = 10°C).

I_Evap_HTC) at -10°C,	$I_{\text{Evap},\text{HTC}}$ at -10°C, (I_{Cond} = 50°C), and isentropic compressors efficiency =80%, Cooling load =35.16/ kW, temperature overlapping=10°C).										
Ecofriendly	HTC First Law	HTC	LTC First law	Second law	Cascade	Cascade	Cascade	HTC	LTC		
Refrigerants	Efficiency	EDR	Efficiency	Efficiency	COP	Exergetic	EDR	mc(t)	mc(t)		
-	(COPhtc)					Efficiency					
R1234ze(Z)	2.728	1.678	1.556	0.3735	0.8093	0.4098	1.440	0.3859	0.2309		
R1234ze(E)	2.420	2.019	1.556	0.3313	0.7902	0.3860	1.591	0.5414	0.2309		
R1243zf	2.424	2.014	1.556	0.3317	0.7904	0.3863	1.589	0.4852	0.2309		
R-1224yd(Z)	2.622	1.786	1.556	0.3589	0.8032	0.4019	1.488	0.5159	0.2309		
R-1225ye(Z)	2.378	2.072	1.556	0.3255	0.7872	0.3825	1.614	0.6403	0.2309		
HFO1336mzz(Z)	2.568	1.845	1.556	0.3515	0.7998	0.3978	1.514	0.5185	0.2309		
R1234yf	2.223	2.286	1.556	0.3043	0.7757	0.3692	1.709	0.6656	0.2309		
R134a	2.464	1.964	1.556	0.3373	0.7932	0.3896	1.567	0.4773	0.2309		

Table-5(b) Effect of ecofriendly refrigerants on the system performances of cascaded vapour compression refrigeration system using R-1225ye(Z) in low temperature cycle evaporator ($T_{\text{Evap}_{LTC}}$) at = -75°C and following ecofriendly ultra low GWP refrigerants in higher temperature cycle for $T_{\text{Evap}_{LTC}}$ at = -70°C and isentropic compressors efficiency =80%. Cooling load = 35 167 kW temperature overlapping=10°C

$I_Evap_HTC)$ at -10°C,			-	55 V		0			11 0
Ecofriendly	HTC First Law	HTC	LTC First	Second	Cascade	Cascade	Cascade	HTC	LTC
Refrigerants	Efficiency	EDR	law	law	COP	Exergetic	EDR	mc(t)	mc(t)
	(COP _{HTC})		Efficiency	Efficiency		Efficiency			
R1234ze(Z)	2.728	1.678	1.516	0.3735	0.8059	0.4024	1.485	0.3899	0.3080
R1234ze(E)	2.420	2.019	1.516	0.3313	0.7859	0.3792	1.637	0.5469	0.3080
R1243zf	2.424	2.014	1.516	0.3317	0.7861	0.3795	1.635	0.4902	0.3080
R1224yd(Z)	2.622	1.786	1.516	0.3589	0.7991	0.3947	1.533	0.5211	0.3080
R1233zd(E)	2.691	1.715	1.516	0.3684	0.8032	0.3997	1.502	0.4312	0.3080
HFO-1336mzz(Z)	2.568	1.845	1.516	0.3515	0.7957	0.3907	1.560	0.5242	0.3080
R1234yf	2.223	2.286	1.516	0.3043	0.7712	0.3628	1.756	0.6724	0.3080
R134a	2.464	1.964	1.516	0.3373	0.7889	0.3827	1.613	0.4822	0.3080

Table-5(c) Effect of ecofriendly refrigerants on the system performances of cascaded vapour compression refrigeration system using HFO-1336mzz(Z) in low temperature cycle evaporator (T_Evap_{LTC}) at = -75°C and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for $T_{Evap_{HTC}}$) at -10°C, (T_{cond} =50°C), and isentropic HTC<C compressors efficiency =80%, Cooling load =35.167 kW, temperature overlapping=10°C).

			iemperaiare o	veriapping_10	r C).				
Ecofriendly	HTC First law Efficiency	HTC	LTC First	Second law	Cascade	Cascade	Cascad	HTC	LTC
Refrigerants	(COP _{HTC})	EDR	law Eff	Efficiency	COP	EDR	e EDR	mc(t)	mc(t)
R1234ze(Z)	2.728	1.678	1.516	0.3735	0.8059	0.4024	1.485	0.3913	0.2765
R1234ze(E)	2.420	2.019	1.516	0.3313	0.7859	0.3792	1.637	0.549	0.2765
R1243zf	2.424	2.014	1.516	0.3317	0.7861	0.3795	1.635	0.4920	0.2765
R1224yd(Z)	2.622	1.786	1.516	0.3589	0.7991	0.3947	1.533	0.5231	0.2765
R1233zd(E)	2.691	1.715	1.516	0.3684	0.8032	0.3997	1.502	0.4328	0.2765
R1225ye(Z)	2.378	2.072	1.516	0.3255	0.7813	0.3734	1.678	0.6493	0.2765
R1234yf	2.223	2.286	1.516	0.3043	0.7712	0.3628	1.756	0.6749	0.2765
R134a	2.464	1.964	1.516	0.3373	0.7889	0.3827	1.613	0.4840	0.2765

Table-6(a-c), show the effect of ecofriendly refrigerants in high temperature circuit on the system performances of cascaded vapour compression refrigeration system using , R1225ye(Z) and HFO1336mzz(Z) in low temperature cycle evaporator (T_Evap_{LTC}) at = -75°C and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for evaporator temperature (T_Evap_HTC) at -30°C, and isentropic HTC compressors efficiency =80%, LTC compressors efficiency =35.167 kW, =80%, Cooling load temperature overlapping=10°C) it was found that best thermodynamic performances occurred by using R1233zd(E) in LTC and R1234ze(Z) but performances are nearly similar at this lower

temperature. Table-7(a-b) ,shows the effect of ecofriendly refrigerants in high temperature circuit on the system performances of cascaded vapour compression refrigeration system using , R1225ye(Z) and HFO1336mzz(Z) in low temperature cycle evaporator (T_Evap_LTC) at = -95°C and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for evaporator temperature (T_Evap_HTC) at - 30°C, and isentropic HTC compressors efficiency =80%, LTC compressors efficiency =80% , Cooling load =35.167 kW, temperature overlapping=10°C) it was found best thermodynamic performances using HFO-1336mzz(Z)in LTC and R1234ze(Z).

Table-6(a) Effect of ecofriendly refrigerants on the system performances of cascaded vapour compression refrigeration system using R-1233yd(E) in
low temperature cycle evaporator (T_Evap_{LTC}) at = -75°C and following ecofriendly ultra low GWP refrigerants in higher temperature cycle for
$T_{_Evap_HTC}$) at -20°C, ($T_{_Cond}$ =55°C), and subcooling of condenser at 50°C, isentropic compressors efficiency =80%, Cooling load =35.167 kW,

			te	emperature	overlapp	oing=10°C	.).				
Ecofriendly	HTC First	HTC	HTC 2 nd law	LTC 1st	HTC	LTC	Cascade	Cascade	Cascad	HTC	LTC
Refrigerants	Law Eff	EDR	(Exergetic)	law Eff	work	work	1 st law eff	Exergetic	e EDR	Q_Co	Q_Cond
-	(COP _{HTC})		Efficiency		kW	"kW"	Cascade	Eff		nd	= HTC
							COP_ cas			"kW"	Q_eva
R1234ze(Z)	2.029	1.771	0.3609	1.892	26.49	18.59	0.7801	1.538	0.3940	80.25	53.76
R1234ze(E)	1.767	2.183	0.3142	1.892	30.43	18.59	0.7174	1.760	0.3623	84.18	53.76
R1243zf	1.779	2.160	0.3165	1.892	30.21	18.59	0.7206	1.748	0.3639	83.97	53.76
HFO1336mzz(Z)	1.88	1.99	0.3343	1.892	28.59	18.59	0.7454	1.656	0.3765	82.34	53.76
R-1225ye(Z)	1.738	2.235	0.3091	1.892	30.93	18.59	0.7102	1.788	0.3587	84.69	53.76
R1234yf	1.606	2.501	0.2856	1.892	33.47	18.59	0.6755	1.931	0.3411	87.23	53.76
R134a	1.841	2.099	0.3227	1.892	29.63	18.59	0.7293	1.715	0.3683	83.39	53.76
R245fa	1.944	1.892	0.3458	1.892	27.65	18.59	0.7605	1.604	0.3841	81.43	53.76

Table-6(b) Effect of ecofriendly refrigerants on the system performances of cascaded vapour compression refrigeration system using HFO-1336mzz(Z) in low temperature cycle evaporator (T_Evap_LTC) at = -95°C and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for T_Evap_HTC) at -20°C, (T_cond =55°C), and sub cooling at 50°C) isentropic HTC<C compressors efficiency =80%, Cooling load =35 167 kW temperature overlapping=10°C)

			load	=33.107 KW	, tempera	ture over	lapping=10°C).			
Ecofriendly	HTC First	HTC	HTC 2 nd law	LTC 1st	HTC	LTC	Cascade 1st	Cascade	Cascade	HTC	LTC
Refrigerants	Law Eff	EDR	(Exergetic)	law Eff	work	work	law eff	Exergetic	EDR	Q_Con	Q_Cond=
	(COP _{HTC})		Efficiency		kW	kW	Cascade	Eff		d	Q_eva_htc
							COP_ Cas			"kW"	"kW"
R1234ze(Z)	2.029	1.771	0.3609	1.845	26.72	19.06	0.7681	1.578	0.3879	80.95	54.23
R1234ze(E)	1.767	2.183	0.3142	1.845	30.70	19.06	0.7068	1.801	0.3570	83.97	54.23
R1243zf	1.779	2.160	0.3165	1.845	30.48	19.06	0.7099	1.789	0.3585	84.70	54.23
R1233zd(E)	1.88	1.822	0.3543	1.845	27.22	19.06	0.7599	1.608	0.3838	81.45	54.23
R1225ye(Z)	1.738	2.235	0.3091	1.845	31.20	19.06	0.7352	1.693	0.3713	83.0	54.23
R1234yf	1.606	2.501	0.2856	1.845	33.77	19.06	0.6657	1.974	0.3362	88.0	54.23
R134a	1.841	2.099	0.3227	1.845	29.89	19.06	0.7184	1.715	0.3628	84.12	54.23
R245fa	1.944	1.892	0.3458	1.845	27.90	19.06	0.7489	1.715	0.3782	82.12	54.23

Table-6(c) Effect of ecofriendly refrigerants on the system performances of cascaded vapour compression refrigeration system using R-1225ye(Z) in low temperature cycle evaporator (T_Evap_LTC) at = -75°C and following ecofriendly ultra low GWP refrigerants in higher temperature cycle for T_{Evap_HTC}) at -20°C, ($T_{_Cond}$ =55°C), and sub cooling at -50°C), isentropic compressors efficiency =80%, Cooling load =35.167 kW, temperature overlappine=10°C).

Ecofriendly	HTC	1 st	HTC	HTC	2 nd	LTC 1st	HTC	LTC	Cascade	Cascade	Cascade	HTC	LTC
Refrigerants	Law	Eff	EDR	law		law Eff	work	work	1st law eff	Exergetic	EDR	Q_Co	Q_Cond=
	(COP _F	нтс)		(Exerg	etic)		kW	"kW"	Cascade	Eff		nd	Q_eva_htc
				Efficie	ncy				COP_ Cas			"kW"	"kW"
R1234ze(Z)	2.02	29	1.771	0.36	09	1.868	26.61	18.83	0.7741	0.3909	1.558	80.6	53.43
R1234ze(E)	1.76	57	2.183	0.31	42	1.868	30.56	18.83	0.7121	0.3595	1.781	84.56	53.43
R1243zf	1.77	79	2.160	0.31	65	1.868	30.35	18.83	0.7152	0.3612	1.768	84.34	53.43
R-1233yd(E)	1.99	92	1.822	0.35	43	1.868	27.1	18.83	0.7657	0.3867	1.822	81.09	53.43
HFO1336mzz(Z)	1.8	8	1.99	0.33	43	1.868	28.71	18.83	0.7398	0.3736	1.677	82.71	53.43
R1234yf	1.60)6	2.501	0.28	56	1.868	33.82	18.83	0.6705	0.3387	1.953	87.61	53.43
R134a	1.81	14	2.099	0.32	27	1.868	29.76	18.83	0.7238	0.3656	1.736	83.75	53.43
R245fa	1.94	14	1.892	0.34	58	1.868	27.77	18.83	0.7547	0.3811	1.624	81.77	53.43

Table-8, shows the effect of subcooling at condenser outlet on the system performances of cascaded vapour compression refrigeration system using R1234ze(Z) in high temperature circuit and HFO1336mzz(Z) in low temperature cycle evaporator (T_Evap_LTC) at = -95°C and following ecofriendly ultra-low GWP refrigerants in HTC for T_Evap_HTC) at -30°C, and isentropic HTC compressors efficiency =80%, LTC compressors efficiency =80%, Cooling load =35.167 kW, temperature overlapping=10°C) it was found that sub cooling temperature increases, the overall cascaded COP is increases and also HTC Energy Efficiency (COP) and exergetic efficiency is increases because high temperature compressor work and mass flow rate in HTC is decreases. Also heat rejected by HTC condenser and EDR of HTC and whole system is decreases.

Table-7(a) Effect of ecofriendly refrigerants on the system performances of cascaded vapour compression refrigeration system using R-1225ye(Z) in low temperature cycle evaporator (T_Evap_{LTC}) at = -95°C and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for $T_{Evap_{HTC}}$ at -20°C. ($T_Cond = 50^{\circ}C$), and isentropic compressors efficiency = 80%. Cooling load = 35.167 kW, temperature overlapping=10°C).

T_Evap_HTC) at	-20°C, (I_Co	$5nd = 50^{\circ}$), and ise	ntropic c	ompress	ors efficie	ncy = 80%,	Cooling loa	d = 35.16/	kW, tem	perature ov	erlapping	$=10^{\circ}C$).
Ecofriendly	HTC 1st	HTC	HTC	LTC	HTC	LTC	Cascade	Cascade	Casca	HTC	LTC	HTC	LTC
Refrigerants	Law Eff	EDR	2 nd law	1 st	work	work	1 st law	Exergeti	de	Q_Co	Q_Con	Mass	Mass
	(COP _{HTC}		(Exerg	law	kW	"kW"	eff	c Eff	EDR	nd	d=	flow	flow
)		etic)	Eff			Cascade			"kW"	Q_eva_	rate	rate
			Efficie				COP_				HTC	Kg/sec	Kg/sec
			ncy				Cas				"kW"		-
R1234ze(Z)	2.029	1.771	0.3609	1.119	32.81	31.42	0.5475	0.3691	1.709	99.39	66.58	0.4660	0.2777
R1234ze(E)	1.767	2.183	0.3142	1.119	37.69	31.42	0.5089	0.3431	1.915	104.3	66.58	0.6681	0.2777
R1243zf	1.779	2.16	0.3165	1.119	37.42	31.42	0.5109	0.3444	1.904	104.0	66.58	0.5933	0.2777
R1233zd(E)	1.992	1.822	0.3543	1.119	33.42	31.42	0.5424	0.3656	1.735	100.0	66.58	0.5194	0.2777
R1225ye(Z)	1.738	2.235	0309	1.119	38.31	31.42	0.5044	0.340	1.941	104.9	66.58	0.7883	0.2777
R1234yf	1.606	2.501	0.2856	1.119	41.46	31.42	0.4825	0.3253	2.074	108.0	66.58	0.8305	0.2777

Table-7(b) Effect of ecofriendly refrigerants on the system performances of cascaded VCRS using R-1225ye(Z) in low temperature cycle evaporator (T_Evap_{LTC}) at $=-95^{\circ}C$ and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for $T_{Evap_{HTC}}$) at $-20^{\circ}C$, $(T_Cond = 50^{\circ}C)$ and isentropic HTC<C compressors efficiency = 80%. Cooling load = 35, 167, kW, temperature overlapping=10^{\circ}C)

=30°C), d	ina isentre	opic HIC.	ali C com	pressors e	jjiciency :	=00%, C	ooling load :	=33.107 KV	v, tempe	erature o	veriapping	$g = 10^{\circ} C$).	
Ecofriendly	HTC	HTC	HTC	LTC	HTC	LTC	Cascade	Cascad	Casc	HTC	LTC	HTC	LTC
Refrigerants	1 st	EDR	2 nd law	1 st law	work	work	1 st law	e	ade	Q_C	Q_Co	Mass	Mass
	Law		(Exerge	Eff	kW	"kW	eff	Exerge	EDR	ond	nd=	flow	flow
	Eff		tic)			"	Cascade	tic Eff		"kW	Q_eva	rate	rate
	(COP		Efficien				COP_ Cas			"	_HTC	Kg/sec	Kg/sec
	нтс)		су								"kW"		
R1234ze(Z)	2.029	1.771	0.3609	1.151	32.81	30.55	0.5475	0.369	1.70	99.3	66.58	0.4660	0.2777
R1234ze(E)	1.767	2.183	0.3142	1.151	37.69	30.55	0.5089	0.343	1.91	104.	66.58	0.6681	0.2777
R1243zf	1.779	2.16	0.3165	1.151	37.42	30.55	0.5109	0.344	1.90	104.	66.58	0.5933	0.2777
R1233zd(E)	1.992	1.822	0.3543	1.151	33.42	30.55	0.5424	0.365	1.73	100	66.58	0.5194	0.2777
HF01336mzz(Z)	1.88	1.99	0.3345	1.151	34.95	30.55	0.5369	0.361	1.76	100	66.58	0.6334	0.2777
R1234yf	1.606	2.501	0.2856	1.151	41.46	30.55	0.4825	0.325	2.07	108	66.58	0.8305	0.2777

Table-8 Effect of ecofriendly refrigerants on the system performances of cascaded VCRS using R1234ze(Z) in HTC and HFO1336mzz(Z) in LTC evaporator (T_Evap_LTC) at = -95°C and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for $T_{_Evap_HTC}$) at -30°C, and isentropic HTC compressors efficiency =80%, LTC compressors efficiency =80%, Cooling load =35.167 kW, temperature overlapping=10°C).

Sub	HTC	HTC	HTC 2 nd	LTC	HTC	LTC	Cascade	Cascade	Casc	Heat	LTC	HTC	LTC
cooling	1 st	EDR	law	1 st	work	work	1 st law	Exergeti	ade	Rejected	Q_Co	Mass	Mass
temp at	Law		(Exergeti	law	kW	"kW"	eff	c Eff	EDR	by HTC	nd=	flow	flow rate
cond	Eff		c) Eff	Eff			Cascade			cond	Q_eva	rate	Kg/sec
outlet °C	(COP _H						COP_			"kW"	_HTC	Kg/sec	-
	TC)						Cas						
0	1.552	1.847	0.3512	1.351	39.42	26.01	0.5375	0.3623	1.760	100.6	66.58	0.4732	0.2534
5	1.634	1.705	0.3697	1.351	37.45	26.01	0.5542	0.3737	1.677	98.62	66.58	0.4495	0.2534
10	1.714	1.577	0.3880	1.351	35.68	26.01	0.5701	0.3843	1.602	96.86	66.58	0.4283	0.2534
15	1.794	1.463	0.4061	1.351	34.10	26.01	0.5851	0.3945	1.535	95.27	66.58	0.4093	0.2534
20	1.873	1.359	0.4239	1.351	32.65	26.01	0.5995	0.4040	1.415	93.84	66.58	0.3920	0.2534
25	1.951	1.265	0.4415	1.351	31.36	26.01	0.6130	0.4133	1.420	92.53	66.58	0.3764	0.2534
30	2.028	1.179	0.4590	1.351	30.70	26.01	0.6260	0.4220	1.369	91.34	66.58	0.3621	0.2534

Table-9(a) and Table-9(b) , show the effect of temperature overlapping in cascaded condenser at condenser of the system performances of cascaded vapour compression refrigeration system using R1234ze(Z) in high temperature circuit and HFO1336mzz(Z) in low temperature cycle evaporator (T_Evap_LTC) at = -95°C and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for T_Evap_HTC) at -30°C, and isentropic HTC compressors efficiency =80%, LTC compressors efficiency =80%, Cooling load =35.167 kW,

temperature overlapping=10°C) it was found that temperature overlapping is increases , the overall cascaded COP is decreases and HTC Energy Efficiency (COP) and exergetic efficiency do not affect because high and low temperature compressors work is increases and both mass flow rate in the HTC and LTC circuit are increases mass flow rate in HTC is decreases. Also heat rejected by HTC condenser and exergy destruction ratio of HTC and whole system is increases reases is decreases

Table-9(a) Effect of ecofriendly refrigerants on the system performances of cascaded vapour compression refrigeration system using R1234ze(Z) in high temperature circuit and HFO1336mzz(Z) in low temperature cycle evaporator (T_Evap_LTC) at = -95°C and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for T_Evap_HTC) at -30°C, and isentropic HTC compressors efficiency =80%, LTC compressors

			efficiency =8	0%, Coo	ling load	=35.167	kW, temper	ature overla	apping=10	^{o}C).			
Temperature	HTC	HTC	HTC	LTC	HTC)	LTC	Cascade	Cascade	Cascad	Heat	LTC	HTC	LTC
Overlapping	First	EDR	Second	First	work	work	first law	Exergeti	e EDR	Rejec	Q_Co	Mass	Mass
(°C)	Law		law	law	"kW"	"kW"	efficien	с		ted by	nd=	flow	flow
	Efficien		(Exergeti	Eff			cy	Efficien		HTC	Q_ev	rate	rate
	су		c)				Cascade	cy		cond-	A_HTC	Kg/sec	Kg/sec
	(COP _{HT}		Efficienc				COP_			enser	"kW"		
	c)		у				Cas			"kW"			
0	1.714	1.577	0.3880	1.651	32.94	21.30	0.6483	0.4370	1.288	89.41	56.47	0.3954	0.2331
5	1.714	1.577	0.3880	1.491	34.27	23.58	0.6079	0.4098	1.440	93.01	58.75	0.4113	0.2428
10	1.714	1.577	0.3880	1.352	35.68	26.01	0.5701	0.3843	1.602	96.86	61.17	0.4283	0.2534
15	1.714	1.577	0.3880	1.229	37.20	28.61	0.5344	0.3602	1.776	101.0	63.76	0.4465	0.2650
20	1.714	1.577	0.3880	1.119	38.84	31.42	0.5006	0.3375	1.963	105.4	66.58	0.4662	0.2777

Table-9(b) Effect of ecofriendly refrigerants on the system performances of cascaded vapour compression refrigeration system using R152ain high temperature circuit and HFC134a in low temperature cycle evaporator (T_Evap_LTC) at = -95°C and following ecofriendly ultra-low GWP refrigerants in higher temperature cycle for T_{Evap_HTC}) at -30°C, and isentropic HTC compressors efficiency =80%, LTC compressors efficiency =80%. Cooling load =35.167 kW temperature overlanning=10°C)

			=80	J%, C00	ung ioaa	=33.10/	кw, temper	ature overic	ipping=10°C	<i>.</i>).			
Tempera	HTC	HTC	HTC	LTC	HTC)	LTC)	Cascade	Cascade	Cascade	Heat	LTC	HTC	LTC
-ture	First	EDR	Second	First	work	work	first law	Exergeti	EDR	Rejecte	Q_Co	Mass	Mass
Overlapp	Law		law	law	"kW"	"kW"	efficien	с		d by	nd=	flow	flow
ing (°C)	Efficie		(Exergeti	Effici			cy	Efficien		HTC	Q_eva	rate	rate
	ncy		c) Eff	ency			Cascade	су		cond	_HTC	Kg/sec	Kg/sec
	(COP _H						COP_	-		"kW"	"kW"		-
	тс)						Cas						
0	1.669	1.647	0.3778	1.667	33.70	21.09	0.4327	0.3623	1.669	89.96	56.26	0.2759	0.1965
5	1.669	1.647	0.3778	1.509	35.03	23.30	0.6029	0.4054	1.460	93.5	58.47	0.2868	0.2039
10	1.669	1.647	0.3778	1.371	36.44	25.65	0.5664	0.3818	1.619	97.25	60.82	0.2983	0.2118
15	1.669	1.647	0.3778	1.249	37.94	28.16	0.5321	0.3587	1.788	101.3	63.33	0.3104	0.2204
20	1.669	1.647	0.3778	1.140	39.55	30.85	0.4996	0.3368	1.969	105.6	66.01	0.3238	0.2299

2.3 Thermal performances of three cascaded vapour compression refrigeration systems for ultra-low temperature applications

The following systems have been considered for thermodynamic performance at ultralow evaporator temperature (-155°C) of three cascaded vapour compression refrigeration system using HFO refrigerants.

System-1

Cascaded vapour compression refrigeration system using R1234ze(Z) in HTC at evaporator temperature of -30°C and R-1225ye (Z) in MTC at evaporator temperature of -95°C and HFO-1336mzz (Z) in LTC at evaporator temperature at -155°C.

System-2

Cascaded vapour compression refrigeration system using R1234ze(Z) in HTC at evaporator temperature of -30° C and 1336mzz (Z) in MTC at evaporator temperature of -95° C and R-1225ye (Z) in LTC at evaporator temperature at -155° C.

System-3

Cascaded vapour compression refrigeration system using R1234ze(E) in HTC at evaporator temperature of -30°C and 1225ye (Z) in MTC at evaporator temperature of -95°C and HFO-1336mzz (Z) in LTC at evaporator temperature at -155°C.

System-4

Cascaded vapour compression refrigeration system using R1234ze(E) in HTC at evaporator temperature of -30°C and HFO-1336mzz (Z) in MTC at evaporator temperature of -95°C and R1225ye (Z) inLTC at evaporator temperature at -155°C.

System-5

Cascaded vapour compression refrigeration system using R1243zf in HTC at evaporator temperature of -30°C and R-1225ye (Z) in MTC at evaporator temperature of -95°C and HFO-1336mzz (Z) in LTC at evaporator temperature at -155°C.

System-6

Cascaded vapour compression refrigeration system using R1243zf in HTC at evaporator temperature of -30°C and HFO-1336mzz (Z) inMTC at evaporator temperature of -95°C and R-1225ye (Z) in LTC at evaporator temperature at -155°C.

System-7

Cascaded vapour compression refrigeration system using R1233zd(E) in HTC at evaporator temperature of -30°C and HFO-1336mzz (Z) in MTC at evaporator temperature of -95°C and R1225ye (Z) inLTC at evaporator temperature at -155°C.

System-8

Cascaded vapour compression refrigeration system using R1233zd(E) in HTC at evaporator temperature of -30°C and 1225ye (Z) in MTC at evaporator temperature of -95°C and HFO-1336mzz (Z) in LTC at evaporator temperature at -155°C.

System-9

Cascaded vapour compression refrigeration system using

R1234yf in HTC at evaporator temperature of -30° C and R1233zd (E) in MTC at evaporator temperature of -95° C and R-1225ye (Z) in LTC at evaporator temperature at -155° C.

System-10

Cascaded vapour compression refrigeration system using R1234yf in HTC at evaporator temperature of -30°C and R1233zd (E) in MTC at evaporator temperature of -95°C and HFO-1336mzz (Z) in LTC at evaporator temperature at -155°C. To find out the effect of system performances using R1234ze(Z)ecofriendly refrigerant in high temperature cycle at condenser temperature T Cond =55°C and subcooling at 45°C and evaporator temperature -30°C, and ecofriendly refrigerant in intermediate temperature cycle at evaporator temperature -95°C and following four cascaded systems (system-1to system-4) using ecofriendly refrigerant in low temperature cycle at evaporator temperature -155°C on the performance of cascade vapour compression refrigeration systems for isentropic compressors efficiencies =80%. it was observed that First law (energy) and second law (Exergy) performances of system-2 are highest and system-9 is lowest is shown in Table-10(a) & Table-10(b) respectively.

Table-10(a) Effect of system performances using R1234ze(E)ecofriendly refrigerant in high temperature cycle at condenser temperature $T_{_Cond}$ =50°C and evaporator temperature -10°C, and ecofriendly refrigerant in intermediate temperature cycle at evaporator temperature -75°C and following ecofriendly refrigerant in low temperature cycle at evaporator temperature -135°C on the performance of cascade vapour compression refrigeration systems for isentronic compressors efficiencies =80%

refrigeration systems j	for isentropic	compressors	efficiencies =	80%.	-	
Performance Parameters	System-1	System-2	System-3	System-4	System-5	System-6
HTC First law Efficiency (COP_HTC)	1.714	1.714	1.497	1.497	1.516	1.516
MTC First law Efficiency(COP MTC _)	1.391	1.352	1.391	1.352	1.391	1.352
LTC First law Efficiency(COP_LTC)	0.6181	0.6209	0.6181	0.6209	0.6181	0.6209
Cascade First law Efficiency (COP Cascade)	0.5808	0.5701	0.5355	0.5259	0.5396	0.5292
Cascade First law Efficiency (COP_ Cascade)	0.1951	0.20	0.1834	0.188	0.1805	0.1831
ExergeticEfficiency_HTC	0.3880	0.3388	0.3388	0.3880	0.3431	0.3431
Exergy Destruction Ratio (EDR_HTC)	1.577	1.577	1.951	1.951	1.915	1.694
Exergetic Efficiency_MTC	0.3937	0.3992	0.3690	0.3683	0.3658	0.3711
System Exergy Destruction Ratio _Two Stages	1.391	1.506	1.755	1.715	1.734	1.694
ExergeticEfficiency_Three_Stages	0.2927	0.3052	0.2798	0.2868	0.2814	0.2814
Exergy Destruction Ratio (EDR_Three_Stages)	2.359	2.277	2.574	2.487	2.553	2.467
Work required to run Compressor W _{Comp HTC} "kW"	79.35	77.72	90.87	89.0	89.74	87.9
Work required to run Compressor W _{Comp MTC} "kW"	56.90	56.64	56.90	56.64	56.90	56.64
Work required to run Compressor W _{Comp} "kW"	43.96	41.43	43.96	41.43	43.96	41.46
Exergy of Fuel_Two Stages "kW"	136.2	134.4	147.8	145.6	146.6	146.6
Exergy_Product_Two Stages "kW"	53.36	51.64	53.36	51.64	53.36	51.64
Exergy of Fuel_Three Stages "kW"	180.2	175.81	191.7	187.10	190.6	190.6
Exergy_Product_ Three Stages "kW"	53.64	53.64	53.64	53.64	53.64	53.64
Condenser Heat _ HTC "kW"	215.4	211.0	226.9	222.2	225.8	221.1
HTC Evaporator load = Condenser Heat _ MTC "kW"	136.0	133.2	136.0	133.2	136	133.2
MTC Evaporator load = Condenser Heat _ LTC "kW"	79.13	76.59	79.13	76.59	79.13	76.59
MTC Evaporator load"kW"	35.167	35.167	35.167	35.167	35.167	35.167
HTC Mass flow rate (kg/sec)	0.9524	0.9329	1.361	1.33	1.198	1.176
MTC Mass flow rate (kg/sec)	0.6305	0.5520	0.6305	0.552	0.6305	0.552
LTC Mass flow rate (kg/sec)	0.1907	0.2180	0.1907	0.218	0.1907	0.1915

Table-10(b) Effect of system performances using R1234ze(E)ecofriendly refrigerant in high temperature cycle at condenser temperature $T_{cond} = 50^{\circ}$ C and evaporator temperature -10°C, and ecofriendly refrigerant in intermediate temperature cycle at evaporator temperature -75°C and following ecofriendly refrigerant in low temperature cycle at evaporator temperature -135°C on the performance of cascade vapour compression refrigeration systems for isentropic compressors efficiencies =80%.

Performance Parameters	System-7	System-8	System-9	System-10
HTC First law Efficiency (COP_ HTC)	1.677	1.677	1.37	1.37
MTC First law Efficiency(COP MTC _)	1.391	1.352	1.391	1.352
LTC First law Efficiency(COP_LTC)	0.6181	0.6209	0.6181	0.6209
Cascade First law Efficiency (COP Cascade)	0.5628	0.5734	0.4977	0.5067
Cascade First law Efficiency (COP_ Cascade)	0.1961	0.1933	0.1801	0.1757
ExergeticEfficiency_HTC	0.3796	0.3796	0.3101	0.3101
Exergy Destruction Ratio (EDR_HTC)	1.634	1.634	2.225	2.225
Exergetic Efficiency_MTC	0.3942	0.3837	0.3486	0.3435
System Exergy Destruction Ratio _Two Stages	1.537	1.573	1.869	1.911
ExergeticEfficiency_Three_Stages	0.3022	0.2948	0.2747	0.2680
Exergy Destruction Ratio (EDR_Three_Stages)	2.309	2.392	2.641	2.731
Work required to run Compressor W _{Comp HTC} "kW"	79.45	81.11	79.24	99.28
Work required to run Compressor WComp MTC "kW"	56.90	56.64	56.90	56.64
Work required to run Compressor W _{Comp} "kW"	41.93	41.43	43.43	41.43
Exergy of Fuel_Two Stages "kW"	136.1	138.0	153.9	155.2
Exergy_Product_Two Stages "kW"	53.35	51.64	53.35	51.64
Exergy of Fuel_Three Stages "kW"	177.5	182.0	195.3	200.1
Exergy_Product_ Three Stages "kW"	53.64	53.64	53.64	53.64
Condenser Heat _ HTC "kW"	212.7	217.1	230.5	235.3
HTC Evaporator load = Condenser Heat _ MTC "kW"	136.0	133.2	136.0	133.2
MTC Evaporator load = Condenser Heat _ LTC "kW"	79.13	76.59	79.13	76.59
MTC Evaporator load"kW"	35.167	35.167	35.167	35.167
HTC Mass flow rate (kg/sec)	1.046	1.067	1.644	1.678
MTC Mass flow rate (kg/sec)	0.6305	0.5520	0.6305	0.552
LTC Mass flow rate (kg/sec)	0.1907	0.2180	0.1907	0.218

2.4 Thermal performances of three cascaded vapour compression refrigeration systems for low temperature applications

The following systems mentioned in table-11(a) to Table-11(f) have been considered for thermodynamic performance at low evaporator temperature (-115°C) of three cascaded vapour compression refrigeration system using HFO refrigerants

System-1

Cascaded vapour compression refrigeration system usingR1234ze(Z) in HTC at evaporator temperature of -10°C and R1233zd (E) at evaporator temperature of -75°C in MTC and HFO-1336mzz (Z) in LTC at evaporator temperature of -115°C

System-2

Cascaded vapour compression refrigeration system using R1234ze(Z) in HTC at evaporator temperature of -10° C and R1233zd (E) R1233zd (E) at evaporator temperature of -75° C in MTC and and R1225ye (Z) in LTC at evaporator temperature of -115° C

System-3

Cascaded vapour compression refrigeration system usingR1234ze(Z) in HTC at evaporator temperature of -30° C and R1225ye (Z) in MTC at evaporator temperature of -75° C and HFO-1336mzz (Z) in LTC at evaporator temperature of -115° C

System-4

Cascaded vapour compression refrigeration system using R1234ze(Z) in HTC at evaporator temperature of -10°C and HFO-1336mzz (Z) in MTC at evaporator temperature of -75°C and R1225ye (Z) in LTC at evaporator temperature of -115°C.

To find out the effect of system performances using R1234ze(Z) ecofriendly refrigerant in high temperature cycle at condenser temperature $T_{_Cond} = 55^{\circ}C$ and subcooling at $45^{\circ}C$ and evaporator temperature $-10^{\circ}C$, and ecofriendly refrigerant in intermediate temperature cycle at evaporator temperature $-75^{\circ}C$ and following four cascaded systems (system-1to system-4) using ecofriendly refrigerant in low temperature cycle at evaporator temperature $-115^{\circ}C$ on the performance of cascade vapour compression refrigeration systems for isentropic compressors efficiencies =80%. it was observed that First law (energy) and second law (Exergy) performances of system-1 are highest and system-3 is lowest is shown in table-11(a).

Table-11(a) Effect of system performances using R1234ze(Z)ecofriendly refrigerant in high temperature cycle at condenser temperature $T_{cond} = 55^{\circ}C$ and subcooling at 45°C and evaporator temperature -10°C, and ecofriendly refrigerant in intermediate temperature cycle at evaporator temperature -75°C and following ecofriendly refrigerant in low temperature cycle at evaporator temperature -115°C on the performance of cascade vapour compression refrigeration systems for isentropic compressors efficiencies =80%.

Vapour compression refrigeration : Performance Parameters	System-1	System-2	System-3	System-4
HTC First law Efficiency (COP_ HTC)	2.669	2.669	2.669	2.669
MTC First law Efficiency(COP MTC _)	1.516	1.516	1.516	1.502
LTC First law Efficiency(COP_LTC)	1.045	1.035	1.009	1.009
Cascade First law Efficiency (COP Cascade)	0.7948	0.7948	0.7805	0.7752
Cascade First law Efficiency (COP_ Cascade)	0.4234	0.4176	0.4116	0.4150
ExergeticEfficiency_HTC	0.3552	0.3552	0.3552	0.3552
Exergy Destruction Ratio (EDR_HTC)	1.815	1.815	1.815	1.815
Exergetic Efficiency_MTC	0.4730	0.4685	0.460	0.4614
System Exergy Destruction Ratio _Two Stages	1.114	1.135	1.174	1.165
ExergeticEfficiency_Three_Stages	0.3751	0.370	0.3647	0.3678
Exergy Destruction Ratio (EDR_Three_Stages)	1.666	1.703	1.742	1.719
Work required to run Compressor WComp HTC "kW"	32.23	32.54	32.87	32.68
Work required to run Compressor WComp MTC "kW"	33.65	33.98	34.86	34.86
Work required to run Compressor W _{Comp} "kW"	17.19	17.70	17.70	17.19
Exergy of Fuel_Two Stages "kW"	65.88	66.52	67.74	65.54
Exergy_Product_Two Stages "kW"	26.44	26.70	26.70	26.44
Exergy of Fuel_Three Stages "kW"	83.07	84.22	85.44	84.73
Exergy_Product_ Three Stages "kW"	31.16	31.15	31.13	31.15
Condenser Heat _ HTC "kW"	118.2	119.4	120.6	119.9
HTC Evaporator load = Condenser Heat _ MTC "kW"	86.01	86.85	87.73	87.22
MTC Evaporator load = Condenser Heat _ LTC "kW"	52.36	52.87	52.87	52.36
LTC Evaporator load"kW"	35.167	35.167	35.167	35.167
HTC Mass flow rate (kg/sec)	0.5498	0.5552	0.5609	0.5576
MTC Mass flow rate (kg/sec)	0.3438	0.3472	0.4630	0.4117
LTC Mass flow rate (kg/sec)	0.2203	0.1939	0.1939	0.2203

To find out the effect of system performances using R1234ze(E) ecofriendly refrigerant in high temperature cycle at condenser temperature $T_{_Cond} = 55^{\circ}C$ and subcooling at $45^{\circ}C$ and evaporator temperature $-10^{\circ}C$, and ecofriendly refrigerant in intermediate temperature cycle at evaporator temperature $-75^{\circ}C$ and following four cascaded systems (system-5to system-8) using ecofriendly refrigerant in low temperature cycle at evaporator temperature $-115^{\circ}C$ on the performance of cascade vapour compression refrigeration systems for isentropic compressors efficiencies =80% is shown in table-11(b) respectively.

System-5

Cascaded vapour compression refrigeration system using R1234ze(E) in HTC at evaporator temperature of -10°C and R1233zd (E) in MTC at evaporator temperature of -75°C and HFO-1336mzz (Z) in LTCat evaporator temperature of -115°C.

System-6

Cascaded vapour compression refrigeration system

using R1234ze(E) in HTC at evaporator temperature of -30°C and R1233zd (E) in MTC at evaporator temperature of -75°C and R1225ye (Z) in LTCat evaporator temperature of -115°C

System-7

Cascaded vapour compression refrigeration system using R1234ze(E) in HTC at evaporator temperature of -10° C and R1225ye (Z) in MTC at evaporator temperature of -75° C and HFO-1336mzz (Z) in LTCat evaporator temperature of -115° C System-8 cascaded vapour compression refrigeration system using R1234ze(E) in HTC at evaporator temperature of -10° C and HFO-1336mzz (Z) in MTC at evaporator temperature of -75° C and HFO-1336mzz (Z) in MTC at evaporator temperature of -10° C and HFO-1336mzz (Z) in MTC at evaporator temperature of -75° C and R1225ye (Z) inLTCat evaporator temperature of -115° C.

Table-11(b) shows the comparisons of thermodynamic performances of system-5to system-8 using R1234ze(E) in the high temperature cycle and it was observed that First law (energy) and second law (Exergy) performances of system-5 are highest and system-7 is lowest as shown in Table-11(b).

Table-11(b) Effect of system performances using R1234ze(E)ecofriendly refrigerant in high temperature cycle at condenser temperature $T_{cond} = 55^{\circ}C$ and subcooling at 45°C and evaporator temperature -10°C, and ecofriendly refrigerant in intermediate temperature cycle at evaporator temperature -75°C and following ecofriendly refrigerant in low temperature cycle at evaporator temperature -115°C on the performance of cascade vapour compression refrigeration systems for isentropic compressors efficiencies =80%.

Performance Parameters	System-5	System-6	System-7	System-8
HTC First law Efficiency (COP_ HTC)	2.433	2.433	2.433	2.433
MTC First law Efficiency(COP MTC _)	1.556	1.556	1.516	1.502
LTC First law Efficiency(COP_LTC)	1.045	1.035	1.009	1.009
Cascade First law Efficiency (COP Cascade)	0.7588	0.7588	0.7454	0.7404
Cascade First law Efficiency (COP_Cascade)	0.4080	0.4025	0.3968	0.4001
ExergeticEfficiency_HTC	0.3237	0.3237	0.3237	0.3237
Exergy Destruction Ratio (EDR_HTC)	2.089	2.089	2.089	2.089
Exergetic Efficiency_MTC	0.4516	0.4472	0.4393	0.4407
System Exergy Destruction Ratio _Two Stages	1.214	1.236	1.276	1.269
ExergeticEfficiency_Three_Stages	0.3615	0.3566	0.3516	0.3545
Exergy Destruction Ratio (EDR_Three_Stages)	1.766	1.804	1.844	1.821
Work required to run Compressor W _{Comp HTC} "kW"	35.36	35.70	36.06	35.85
Work required to run Compressor WComp MTC "kW"	33.65	33.98	34.86	34.86
Work required to run Compressor W _{Comp} "kW"	17.19	17.70	17.70	17.19
Exergy of Fuel_Two Stages "kW"	69.0	69.68	70.93	70.71
Exergy_Product_Two Stages "kW"	26.44	26.70	26.70	26.44
Exergy of Fuel_Three Stages "kW"	86.20	87.38	88.63	87.9
Exergy_Product_ Three Stages "kW"	31.16	31.15	31.13	31.15
Condenser Heat _ HTC "kW"	121.4	122.6	123.8	123.1
HTC Evaporator load = Condenser Heat _ MTC "kW"	86.01	86.85	87.73	87.22
MTC Evaporator load = Condenser Heat _ LTC "kW"	52.36	52.87	52.87	52.36
MTC Evaporator load"kW"	35.167	35.167	35.167	35.167
HTC Mass flow rate (kg/sec)	0.7535	0.7608	0.7686	0.7641
MTC Mass flow rate (kg/sec)	0.3436	0.3472	0.4630	0.4117
LTC Mass flow rate (kg/sec)	0.2203	0.1939	0.1939	0.2203

To find out the effect of system performances using R1224yd(Z) ecofriendly refrigerant in high temperature cycle at condenser temperature $T_{_Cond} = 55^{\circ}C$ and subcooling at $45^{\circ}C$ and evaporator temperature $-10^{\circ}C$, and ecofriendly refrigerant in intermediate temperature cycle at evaporator temperature $-75^{\circ}C$ and following four cascaded systems (system-9to system-12) using ecofriendly refrigerant in low temperature cycle at evaporator temperature $-115^{\circ}C$ on the performance of cascade vapour compression refrigeration systems for isentropic compressors efficiencies =80% is shown in Table-11(c) respectively.

System-9

Cascaded vapour compression refrigeration system using R1224yd(Z) in HTC at evaporator temperature of -10°C and R1233zd (E) in MTC at evaporator temperature of -75°C and HFO-1336mzz (Z) in LTC at evaporator temperature of -135°C.

System-10

Cascaded vapour compression refrigeration system using R1224yd(Z) in HTC at evaporator temperature of -10°C and

R1233zd (E) in MTC at evaporator temperature of -75° C and R1225ye (Z) inLTC at evaporator temperature of -135° C

System-11

Cascaded vapour compression refrigeration system using R1224yd(Z) in HTC at evaporator temperature of -10°C and HFO-1336mzz (Z) in MTC at evaporator temperature of -75°C and R1225ye (Z) inLTC at evaporator temperature of -135°C

System-12

Cascaded vapour compression refrigeration system using R1224yd(Z) in HTC at evaporator temperature of -10°C and R1225ye (Z) in MTC at evaporator temperature of -75°C and HFO-1336mzz (Z) inLTC at evaporator temperature of -135°C.

Table-11(c) shows the comparisons of thermodynamic performances of system-9to system-12 using R1224yd(Z) in the high temperature cycle and it was observed that First law (energy) and second law (Exergy) performances of system-9 are highest and system-12 is lowest.

Table-11(c) Effect of system performances using R1224yd(Z)ecofriendly refrigerant in high temperature cycle at condenser temperature T_C ond =55°C and subcooling at 45°C and evaporator temperature -10°C, and ecofriendly refrigerant in intermediate temperature cycle at evaporator temperature -75°C and following ecofriendly refrigerant in low temperature cycle at evaporator temperature -115°C on the performance of cascade vapour compression refrigeration systems for isentropic compressors efficiencies =80%.

Performance Parameters	System-9	System-10	System-11	System-12
HTC First law Efficiency (COP_ HTC)	2.59	2.59	2.59	2.59
MTC First law Efficiency(COP MTC _)	1.556	1.556	1.516	1.502
LTC First law Efficiency(COP_LTC)	1.045	1.035	1.009	1.009
Cascade First law Efficiency (COP Cascade)	0.7832	0.7832	0.7692	0.7640
Cascade First law Efficiency (COP_ Cascade)	0.4184	0.4127	0.4069	0.4102
ExergeticEfficiency_HTC	0.3447	0.3447	0.3447	0.3447
Exergy Destruction Ratio (EDR_HTC)	1.901	1.901	1.901	1.901
Exergetic Efficiency_MTC	0.4661	0.4616	0.4534	0.4547
System Exergy Destruction Ratio _Two Stages	1.145	1.166	1.206	1.199
ExergeticEfficiency_Three_Stages	0.3708	0.3657	0.3605	0.3535
Exergy Destruction Ratio (EDR_Three_Stages)	1.696	1.734	1.774	1.751
Work required to run Compressor W _{Comp HTC} "kW"	33.2	33.53	33.87	33.67
Work required to run Compressor W _{Comp MTC} "kW"	33.65	33.98	34.86	34.86
Work required to run Compressor W _{Comp} "kW"	17.19	17.70	17.70	17.19
Exergy of Fuel_Two Stages "kW"	66.85	67.5	68.73	68.53
Exergy_Product_ Two Stages "kW"	26.44	26.70	26.70	26.44
Exergy of Fuel_ Three Stages "kW"	84.04	85.2	86.43	85.72
Exergy_Product_Three Stages "kW"	31.16	31.15	31.13	31.15
Condenser Heat _ HTC "kW"	119.2	120.4	121.6	120.9
HTC Evaporator load = Condenser Heat _ MTC "kW"	86.01	86.85	87.73	87.22
MTC Evaporator load = Condenser Heat _ LTC "kW"	52.36	52.87	52.87	52.36
MTC Evaporator load"kW"	35.167	35.167	35.167	35.167
HTC Mass flow rate (kg/sec)	0.7293	0.7364	0.7440	0.7396
MTC Mass flow rate (kg/sec)	0.3438	0.3472	0.4630	0.4117
LTC Mass flow rate (kg/sec)	0.2203	0.1939	0.1939	0.2203

To find out the effect of system performances using R1243zfecofriendly refrigerant in high temperature cycle at condenser temperature $T_{Cond} = 55^{\circ}C$ and sub cooling at $45^{\circ}C$ and evaporator temperature -10°C, and ecofriendly refrigerant in intermediate temperature cycle at evaporator temperature -75°C and following four cascaded systems (system-13to system-16) using ecofriendly refrigerant in low temperature cycle at evaporator temperature -115°C on the performance of cascade vapour compression refrigeration systems for isentropic compressors efficiencies =80% is shown in Table-11(d) respectively.

System-13

Cascaded vapour compression refrigeration system using R1243zf in HTC at evaporator temperature of -30°C and R1233zd(E) in MTC and R1225ye (Z) in LTC.

System-14

Cascaded vapour compression refrigeration system

usingR1243zf in HTC at evaporator temperature of -30°C andR1233zd(E) in MTC and R1225ye (Z) inLTC

System-15

Cascaded vapour compression refrigeration system using R1243zf in HTC at evaporator temperature of -30° C and HFO-1336mzz (Z) in MTC and R1225ye (Z) in LTC

System-16

Cascaded vapour compression refrigeration system using R1243zf in HTC at evaporator temperature of -30° C and HFO-1336mzz (Z) in MTC and R1225ye (Z) in LTC

Table-11(d) shows the comparisons of thermodynamic performances of system-13to system-16 using R1243zf in the high temperature cycle and it was observed that First law (energy) and second law (Exergy) performances of system-13 are highest and system-15 is lowest.

Table-11(d) Effect of system performances using R124zf ecofriendly refrigerant in high temperature cycle at condenser temperature $T_{cond} = 55^{\circ}C$ and subcooling at 45°C and evaporator temperature -10°C, and ecofriendly refrigerant in intermediate temperature cycle at evaporator temperature -75°C and following ecofriendly refrigerant in low temperature cycle at evaporator temperature -115°C on the performance of cascade vapour compression refrigeration systems for isentronic compressors efficiencies =80%

Performance Parameters	System-13	System-14	System-15	System-16
HTC First law Efficiency (COP_ HTC)	2.431	2.431	2.431	2.431
MTC First law Efficiency(COP MTC_)	1.556	1.556	1.516	1.502
LTC First law Efficiency(COP_LTC)	1.045	1.035	1.035	1.009
Cascade First law Efficiency (COP Cascade)	0.7585	0.7586	0.7451	0.7401
Cascade First law Efficiency (COP_Cascade)	0.4079	0.4023	0.3967	0.3999
ExergeticEfficiency_HTC	0.3235	0.3235	0.3235	0.3235
Exergy Destruction Ratio (EDR_HTC)	2.091	2.091	2.091	2.091
Exergetic Efficiency_mtc	0.4514	0.4470	0.4392	0.4405
System Exergy Destruction Ratio _Two Stages	1.215	1.237	1.277	1.270
ExergeticEfficiency_Three_Stages	0.3614	0.3565	0.3515	0.3544
Exergy Destruction Ratio (EDR_Three_Stages)	1.767	1.805	1.845	1.822
Work required to run Compressor W _{Comp HTC} "kW"	35.38	35.73	36.09	35.88
Work required to run Compressor W _{Comp MTC} "kW"	33.65	33.98	34.86	34.86
Work required to run Compressor W _{Comp} "kW"	17.19	17.70	17.70	17.19
Exergy of Fuel_Two Stages "kW"	69.03	69.70	70.96	70.74
Exergy_Product_Two Stages "kW"	26.44	26.70	26.70	26.44
Exergy of Fuel_ Three Stages "kW"	86.22	87.41	88.66	87.93
Exergy_Product_Three Stages "kW"	31.16	31.15	31.13	31.15
Condenser Heat _ HTC "kW"	121.4	122.6	123.8	123.1
HTC Evaporator load = Condenser Heat _ MTC "kW"	86.01	86.85	87.73	87.22
MTC Evaporator load = Condenser Heat _ LTC "kW"	52.36	52.87	52.87	52.36
MTC Evaporator load"kW"	35.167	35.167	35.167	35.167
HTC Mass flow rate (kg/sec)	0.6764	0.7830	0.7899	0.7859
MTC Mass flow rate (kg/sec)	0.3436	0.3472	0.4630	0.4117
LTC Mass flow rate (kg/sec)	0.2203	0.1939	0.1939	0.2203

To find out the effect of system performances using R1234yfecofriendly refrigerant in high temperature cycle at condenser temperature $T_{_Cond} = 55^{\circ}$ C and sub cooling at 45°C and evaporator temperature -10°C, and ecofriendly refrigerant in intermediate temperature cycle at evaporator temperature -75°C and following four cascaded systems (system-17to system-20) using ecofriendly refrigerant in low temperature cycle at evaporator temperature -115°C on the performance of cascade vapour compression refrigeration systems for isentropic compressors efficiencies =80% is shown in Table-11(e) respectively.

System-17

Ccascaded vapour compression refrigeration system using R1234yf in HTC and R1233zd (E) in MTC and R-1225ye (Z) in LTC.

System-18

Cascaded vapour compression refrigeration system using

R1234yf in HTC and R1233zd (E) in MTC and HFO-1336mzz (Z) in LTC

System-19

Cascaded vapour compression refrigeration system using R1234yf in HTC at evaporator temperature of -30°C and 1225ye (Z) in MTC and HFO-1336mzz (Z) in LTC

System-20

Cascaded vapour compression refrigeration system using R1234yf in HTC at evaporator temperature of -30°C and 1225ye (Z) in MTC and HFO-1336mzz (Z) in LTC

Table-11(e) shows the comparisons of thermodynamic performances of system-17to system-20 using R1234yf in the high temperature cycle and it was observed that First law (energy) and second law (Exergy) performances of system-17 are highest and system-19 is lowest.

Table-11(e) Effect of system performances using R1234yf ecofriendly refrigerant in high temperature cycle at condenser temperature T_Cond =55°C and subcooling at 45°C and evaporator temperature -10°C, and ecofriendly refrigerant in intermediate temperature cycle at evaporator temperature -75°C and following ecofriendly refrigerant in low temperature cycle at evaporator temperature -115°C on the performance of cascade vapour compression refrigeration systems for isentropic compressors efficiencies =80%

compression refrigeration sy	5 1 1	55		Sautana 20
Performance Parameters	System-17	System-18	System-19	System-20
HTC First law Efficiency (COP_HTC)	2.276	2.276	2.276	2.276
MTC First law Efficiency(COP MTC _)	1.556	1.556	1.516	1.502
LTC First law Efficiency(COP_LTC)	1.035	1.045	1.009	1.009
Cascade First law Efficiency (COP Cascade)	0.7329	0.7329	0.7202	0.7154
Cascade First law Efficiency (COP_ Cascade)	0.3925	0.3968	0.386	0.3891
ExergeticEfficiency_HTC	0.3029	0.3029	0.3029	0.3029
Exergy Destruction Ratio (EDR_HTC)	2.302	2.302	2.302	2.302
Exergetic Efficiency_MTC	0.4320	0.4362	0.4245	0.4258
System Exergy Destruction Ratio _Two Stages	1.315	1.293	1.356	1.349
ExergeticEfficiency_Three_Stages	0.3469	0.3516	0.3420	0.3448
Exergy Destruction Ratio (EDR_Three_Stages)	1.883	1.844	1.924	1.90
Work required to run Compressor W _{Comp HTC} "kW"	38.16	37.79	38.55	38.32
Work required to run Compressor W _{Comp MTC} "kW"	33.98	33.65	34.86	34.86
Work required to run Compressor W _{Comp} "kW"	17.7	17.19	17.70	17.19
Exergy of Fuel_Two Stages "kW"	72.14	71.44	73.41	73.18
Exergy_Product_Two Stages "kW"	26.44	26.70	26.70	26.44
Exergy of Fuel_ Three Stages "kW"	89.84	88.63	91.11	90.37
Exergy_Product_Three Stages "kW"	31.16	31.15	31.13	31.15
Condenser Heat _ HTC "kW"	125.0	123.8	126.3	125.5
HTC Evaporator load = Condenser Heat _ MTC "kW"	86.85	86.01	87.73	87.22
MTC Evaporator load = Condenser Heat _LTC "kW"	52.87	52.37	52.87	52.36
MTC Evaporator load"kW"	35.167	35.167	35.167	35.167
HTC Mass flow rate (kg/sec)	0.9203	0.9114	0.9297	0.9242
MTC Mass flow rate (kg/sec)	0.3436	0.3472	0.4630	0.4117
LTC Mass flow rate (kg/sec)	0.2203	0.1939	0.1939	0.2203

To find out the effect of system performances using R1233zd(E)ecofriendly refrigerant in high temperature cycle at condenser temperature $T_{Cond}=55^{\circ}C$ and subcooling at $45^{\circ}C$ and evaporator temperature $-10^{\circ}C$, and ecofriendly refrigerant in intermediate temperature cycle at evaporator temperature $-75^{\circ}C$ and following two cascaded systems (system-21 & system-22) using ecofriendly refrigerant in low temperature cycle at evaporator temperature $-115^{\circ}C$ on the performance of cascade vapour compression refrigeration systems for isentropic compressors efficiencies =80%. Is shown in table-11(f) respectively.

System-21

Cascaded vapour compression refrigeration system using

R1233zd (E) in HTC at evaporator temperature of -10° C and 1225ye (Z) in MTC and HFO-1336mzz (Z) in LTC

System-22

Cascaded vapour compression refrigeration system using R1233zd (E) in HTC at evaporator temperature of -10°C and HFO-1336mzz (Z) in MTC and and R1225ye (Z) inLTC Table-11(f) shows the comparisons of thermodynamic performances of system-21 & system-22 using R1233zd(E) in the high temperature cycle and it was observed that second law (Exergy) performances of system-22 are higher than system-21. Although system-22 is less energy efficient than system-21 in terms of first law efficiency (COP).

Table-11(f) Effect of system performances using $R1233zd(E)$ ecofriendly refrigerant in high temperature cycle at condenser temperature T_{cond}
=55°C and subcooling at 45°C and evaporator temperature -10° C, and ecofriendly refrigerant in intermediate temperature cycle at evaporator
temperature -75°C and following ecofriendly refrigerant in low temperature cycle at evaporator temperature -115°C on the performance of cascade
vanour compression refrigeration systems for isomtropic compressors officiencies = 80%

vapour compression refrigeration systems for isentropic compressors efficiencies =80%.					
Performance Parameters	System 21	System 22			
HTC First law Efficiency (COP_HTC)	2.640	2.640			
MTC First law Efficiency(COP MTC _)	1.516	1.502			
LTC First law Efficiency(COP_LTC)	1.009	1.009			
Cascade First law Efficiency (COP Cascade)	0.7764	0.7711			
Cascade First law Efficiency (COP_Cascade)	0.4099	0.4133			
ExergeticEfficiency_HTC	0.3513	0.3513			
Exergy Destruction Ratio (EDR_HTC)	1.846	1.846			
Exergetic Efficiency_MTC	0.4576	0.4589			
System Exergy Destruction Ratio _Two Stages	1.145	1.179			
ExergeticEfficiency_Three_Stages	0.3632	0.3662			
Exergy Destruction Ratio (EDR_Three_Stages)	1.753	1.731			
Work required to run Compressor W _{Comp HTC} "kW"	33.23	33.04			
Work required to run Compressor W _{Comp MTC} "kW"	34.86	1.846			
Work required to run Compressor W _{Comp} "kW"	17.7	17.19			
Exergy of Fuel_Two Stages "kW"	68.10	67.9			
Exergy_Product_Two Stages "kW"	26.70	26.44			
Exergy of Fuel_Three Stages "kW"	85.80	85.09			
Exergy_Product_ Three Stages "kW"	31.16	31.15			
Condenser Heat _ HTC "kW"	121.0	120.3			
HTC Evaporator load = Condenser Heat _ MTC "kW"	87.73	87.22			
MTC Evaporator load = Condenser Heat _ LTC "kW"	52.87	52.36			
LTC Evaporator load"kW"	35.167	35.167			
HTC Mass flow rate (kg/sec)	0.6191	0.6155			
MTC Mass flow rate (kg/sec)	0.463	0.4117			
LTC Mass flow rate (kg/sec)	0.1939	0.2203			

3. Conclusions

To see the suitability of using HFO refrigerants, the numerical computations for simple vapour compression refrigeration systems(VCRC) in the two & three stages cascaded vapour compression refrigeration system(CVCRC) have been carried to investigate the thermodynamic(energy-exergy) performances of ultra-low GWP hydrofluoroolefens (HFO) refrigerants working on vapour compression refrigeration cycle. The effect of varying temperature overlapping between cascaded condenser-evaporator (approach), and sub cooling in high temperature condenser on thermodynamic performances also been investigated for cascaded vapour compression refrigeration systems.

The output parameters computed are compressors work as exergy input (W_{Comp_HTC} and W_{Comp_LTC}), and Compressor and the coefficient of performance (COP) of HTC cycle and energy performance of cascaded vapour compression refrigeration systems(COP_Cascade_System) have been carried out. The second law performances (exergetic efficiency and exergy destruction ratios) of simple and cascaded vapour compression refrigeration systems have been computed Results showed that R1234ze (Z) and R1233zd(E) gives better thermodynamic performances. Than using HFC -134a. However, R1224yd (Z)of seven GWP

overcome favorable thermodynamic (energy and exergy) performances, above -10°C of evaporator can suitably replace R134a. Similarly, HFO-1336mzz(Z) also gives better energy-exergy performances as compared to HFC-134a. However, R1234yf although gives 4% to 10% lesser thermodynamic (energy and exergy) performances than using high GWP ecofriendly HFC-134a refrigerant. Therefore, these ultra-low GWP ecofriendly HFO refrigerants can serve as new alternative refrigerants for replacing HFC-134a in the vapour compression refrigeration systems for a sustainable environment.

References

- Kyoto Protocol, [1998]. Report of the Conference of the Parties. United Nations Framework Convention on Climate Change (UNFCCC). http://unfccc.int/resource/docs/convkp/kpeng.pdf
- [2] Official Journal of the European Union, Directive 2006/40/EC of the European Parliament and of the Council, 2006.
- [3] Bolaji B.O., Huan Z. [2013]Ozone depletion and global warming: Case for the use of natural refrigerant – a review, Renewable and Sustainable Energy Reviews 18, page-49–54.
- [4] R. S. Mishra, Appropriate Vapour Compression Refrigeration Technologies for Sustainable Development International Journal of Advance Research & Innovations, 2014, 551-556
- [5] Kapil Chopra, V.Sahni, R.S Mishra.[2014] Thermodynamic analyses of multiple evaporators vapour compression refrigeration systems with

R410A, R290, R1234YF, R502, R404A and R152A.International Journal of Airconditioning and Refrigeration, 21(1),1-14.

- [6] R.S. Mishra [2017] Thermodynamic performance evaluation of vapour compression refrigeration systems using low GWP & Zero ODO new generation refrigerants, International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 248-252.
- [7] Kaushalendra Kumar Dubey & R.S Mishra [2017]Thermodynamic study of R134a in Vapour Compression Refrigeration System in Summer Climate, International Journal of Research in Engineering and Innovation (IJREI), ISSN (Online): 2456-6934 Vol-1, Issue-2, 49-53.
- [8] Nikolaidis C, Probert D. [1998] Exergy-method analysis of a two stage vapor compression refrigeration plants performance. Appl Energy.;60:241–56
- [9] D. Yumrutas et. al Exergy analysis of vapour compression refrigeration systems, Exergy, an Int J, 2 (2002) 266-272.
- [10] Dincer I. Refrigeration systems and applications. London: Wiley; 2003. pp. 26–27.
- [11] R.S. Mishra[2018]Thermodynamic analysis of vapour compression refrigeration systems using alternative refrigerants, International Journal of Research in Engineering and Innovation Vol-2, Issue-5 (2018), 538-554.
- [12] R.S. Mishra & Kapil Chopra[2019] Energy & Exergy analysis (Thermodynamic analysis) of a multi-evaporators vapour compression refrigeration system using ecofriendly refrigerants (R410a, R290, R600, R600a, R1234yf, R502, R404a and R152a) International Journal of Research in Engineering and Innovation Vol-3, Issue-5, 343-351.
- [13] R.S Mishra [2020] New & low GWP eco-friendly refrigerants used for predicting thermodynamic (energy-exergy) performances of cascade vapour compression refrigeration system using for replacing R134a, R245fa, and R32, International Journal of Research in Engineering and Innovation Vol-4, Issue-3 (2020), 124-130.
- [14] R.S. Mishra [2017] Improvements therodynamic performances of variable compressor speed vapour compression refrigeration system using ecofriendly refrigerants, International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 137-142
- [15] R.S. Mishra [2020] Performance improvement of vapour compression refrigeration system (VCRS) using ecofriendly refrigerants, International Journal of Research in Engineering and Innovation Vol-4, Issue-3 (2020), 174-178.
- [16] R S Mishra [2017] Thermal modelling of three stage vapour compression cascade refrigeration system using entropy generation principle for reducing global warming and ozone depletion using ecofriendly refrigerants for semen preservation International Journal of Research in Engineering and Innovation, ISSN (Online): 2456-6934, Vol-1, Issue-2, (2017), 22-28.
- [17] Mishra. [2018] Use of fourth generation ecofriendly refrigerants in two and three cascade refrigeration systems for reducing global warming and ozone depletion, International Journal of Research in Engineering and Innovation Vol-2, Issue-2 (2018), 201-208.
- [18] R.S. Mishra[2018] Irreversibility analysis of three stage vapour compression refrigeration systems with flash-intercooler using ecofriendly new refrigerants (R134a, R1234yf, R1234ze, R227ea and R245fa), International Journal of Research in Engineering and Innovation Vol-2, Issue-2 (2018), 136-142.

- [19] R.S. Mishra[] Irreversibility analysis of Two and three stage vapour compression refrigeration systems with multi evaporators and flashintercooler using new ecofriendly refrigerants (R227ea, R236fa, R245fa, R1234yf, R1234ze) for replacing R134a, International Journal of Research in Engineering and Innovation Vol-2, Issue-2 (2018), 183-190
- [20] R.S. Mishra [2018] Thermodynamic performance analysis of two stage vapour compression refrigeration systems with flash-intercooler using ecofriendly new refrigerants (R134a, R1234yf, R1234ze, R227ea and R152a), International Journal of Research in Engineering and Innovation Vol-2, Issue-2, 156-161.
- [21] R.S. Mishra, Evaluation of thermodynamic energy-exergy performances in modified vapour compression refrigeration systems, International Journal of Research in Engineering and Innovation Vol-3, Issue-6 (2019), 364-376
- [22] R.S. Mishra [2018] Thermodynamic performance of vapour compression refrigeration systems using HFO refrigerants for replacing HFC refrigerants, International Journal of Research in Engineering and Innovation Vol-2, Issue-5, 492-497.
- [23] Radhey Shyam Mishra[2018], Thermodynamic (energy-exergy) analysis to improve its efficiencies of multiple stage vapour compression refrigeration systems International Journal of Research in Engineering and Innovation Vol-2, Issue-3, 263-273
- [24] [24] R.S. Mishra [2018] Experimental & theoretical validation of thermodynamic performance of vapour compression refrigeration system using ecofriendly refrigerants, International Journal of Research in Engineering and Innovation Vol-2, Issue-4 (2018), 392-409.
- [25] Radhey Shyam Mishra [2020] Thermal Performance of three stage cascade vapour compression refrigeration systems using new HFO in high and intermediate temperature cycle and R32 ethylene and hydrocarbons in ultra-low temperature cycle refrigerants, International Journal of Research in Engineering and Innovation Vol-4, Issue-2, 109-123
- [26] R.S Mishra[2020] Performance improvement of vapour compression refrigeration system (VCRS) using ecofriendly refrigerants, International Journal of Research in Engineering and Innovation Vol-4, Issue-3, 174-178.
- [27] R.S. Mishra [2017] Modeling of two stages vapour compression cascade refrigeration system using ecofriendly HFO refrigerants for reducing global warming and ozone depletions, International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 164-168.
- [28] R. S Mishra[2017] Thermal performance of HFO refrigerants in two stages cascade refrigeration system for replacing R-134a, International Journal of Research in Engineering and Innovation Vol-1, Issue-6, 153-156.
- [29] R.S. Mishra [2019]Thermal modeling and optimization of four stages cascade vapor compression refrigeration systems for ultra-low temperature applications. International Journal of Research in Engineering and Innovation Vol-3, Issue-6, 408-416
- [30] Radhey Shyam Mishra [2020] Energy-exergy performance evaluation of new HFO refrigerants in the modified vapour compression refrigeration systems using liquid vapour heat exchanger, International Journal of Research in Engineering and Innovation Vol-4, Issue-2, 77-85.

Cite this article as: R.S. Mishra, Thermodynamic performances of cascaded vapour compression refrigeration systems using HFO refrigerants for ultra-low temperature applications, International journal of research in engineering and innovation (IJREI), vol 5, issue 2 (2020), 78-95. https://doi.org/10.36037/IJREI.2021.5201.