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Abstract
The displacement response of different masses of half car model. The analysis has been
done for different car models also to see the dynamic response of the driver body
coupled with the seat of a vehicle. It has been assumed the driver body is rigidly coupled
with seat of the vehicle. The vehicle has been modeled for two D.O.F, in two D.O.F Half
car model two motion (Pitch and Bounce) have been considered. The response of the
vehicle has been obtained for different velocities and different amplitudes sinusoidal
bump excitation. © 2016 ijrei.com. All rights reserved

__________________________________________________________________________________

1. Introduction

This paper deals with the dynamic characterization of an
automotive shock absorber, a continuation of an earlier
work Vibration is undesirable, not only because of the
unpleasant motion, the noise and the dynamic stresses,
which may lead to fatigue and failure of the structure, but
also because of the energy losses and the reduction in
performance which accompany the vibrations [1].
Vibration analysis should be carried out as an inherent part
of the design because of the devastating effects, which
unwanted vibrations could have on machines and
structures.
The shock absorber is one of the most important elements
in a vehicle suspension system. It is also one the most non-
linear and complex elements to model.
The current method of characterizing the dynamic
properties of shock absorbers for CAE models involves
testing at discrete frequencies, displacements, and preloads
using an MTS test machine. The dynamic stiffness (K) and
damping (C) are extracted by fitting a linear model of the
form F(w)=K*x(w)+C*v(w) to the measured input
displacement (x), velocity (v), and output force (F). The
excitation technique is a pure sine excitation at the desired
frequency and amplitude.
These harmonic excitations are then swept through all
desired frequency and amplitudes.

First, it is commonly understood and accepted that human
response to dynamic excitation depends on many
mechanical, physical, physiological and psychological
parameters [2]. The biodynamic response characteristics of
seated occupants influenced by several factors, among
which body posture, body weight and vibration excitation
type and amplitude probably represent the most influential
parameters [3]. Half car has been modelled as two DOF
systems, in which bounce and pitch motion has been
considered, the driver body and vehicle body has
considered as one mass. The mathematical analysis of the
suspension system has been performed to develop the
model. Dynamic analysis has been performed, for solving
the half car model. The goal of this study was to
determine if the current excitation technique holds
true when more than one frequency is present.

In recent years, commercial demand for comfortable and
quiet vehicles has encouraged the industrial development
of methods to accommodate a balance of performance,
efficiency, and comfort levels in new automobiles.
Particularly, the noise, vibration, and harshness (NVH)
characteristics of cars and trucks are becoming increasingly
important [4].
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2. Mathematical Modeling

2.1 Half Car Model: Two Degree of Freedom
The vehicle mass is set at 750kg, and the mass of human
body is assumed to be 55.2kg coupled with the vehicle
body. It has a moment of inertia about the center of mass
of 805.2kg∙m2. Figure A: The center of mass location is set
at a distance 1m from the front axle and 1.5m from the rear
axle.  The effects of the tires (rolling motion, mass, etc.)
have been neglected [6].  The equivalent stiffness and
damping of the front and rear axle assemblies are set to the
same values for each axle, = =25,000 N/m, and =
=2,000N∙s/m respectively. The road roughness has not
been considered in this analysis

Figure A: Half car model with 5-link rear suspension

Table 1 Modes of Vibration for Various Car Models

Modes Bounce Pitch Roll Yaw
Half Car Model Yes yes no No

Figure 1: Two-degree-of-freedom half car mode

Table 2: mass-spring-damper two D.O.F model

Variable Description Value

M1 Mass of the automobile 750kg

M2 Mass of the driver body 55.2kg

M Total mass(M1+M2) 805.2kg

Radius of gyration 1m

J The mass moment of
inertia of the automobile
about the center of mass

805.2kg-m2

Damping coefficient of the
dashpot on the front of the
model

2000Ns/m

Damping coefficient for
the dashpot on the rear of
the model

2000Ns/m

Spring coefficient for the
spring at the front of the
model

25000N/m

Spring coefficient for the
spring at the rear of the
model

25000N/m

Distance from the center
of mass to the front
spring/damper

1m

Distance from the center
of mass to the rear
spring/damper

1.5m

3. Governing Equations

To determine the equations of motion, Lagrange's
equations, also known as the energy method, has utilized.
Equation (1) shows the general form of Lagrange's
equations

̇ − = , i = 1,2 (1)
Where is the non conservative generalized force
corresponding to the ith generalized coordinate .Where L is
related to kinetic and potential energies as follows in
equation (2)= − (2)
Where T is the kinetic energy, U is the potential energy of
the system.  The terms and from Eq. (1) represents a
degree of freedom and the non-conservative work for each
DOF (subscript denoting the first and second degrees of
freedom); represents the derivative of .
By substituting equation (2) into equation (1) for the value
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of L leads to equation (3).

̇ − + = (3)
These equations are then used with the two degree of
freedom system of the automobile.  First, the generalized
coordinates replace the representation . These coordinates
are as follows.

=x(t)

=θ(t)
The kinetic energy and potential energy equations
developed as follows in equations (4) and (5), as well as the
force acting on the vehicle.= ̇ + ̇ (4)
= ( − − ) + ( + − ) (5)
= ( ̇ − ̇ − ̇ ) + ̇ + ̇ − ̇ (6)

where k1 and k2are the equivalent spring rates of the front
and rear suspension, x is the displacement of the body's
center of gravity, l1 and l2are the distances from the center
of gravity to the front suspension and rear suspensions, and
y1and y2 are the input functions of the road for the front and
rear of the system.
The Lagrange equation for found through the following
series of steps.̇ = ̇ = ̈
= 0
= (( − – )) + ( + − )= − ̇ = −( ̇ − ̇ − ̇ + ̇ + ̇ − ̇ )

These separate parts placed into the Lagrange equation as
follows.̈ + ( − – y1) + ( + − ) =−( ̇ − ̇ − ̇ + ̇ + ̇ − ̇ )
This equation has been expanded in order to place it in
matrix form, separating the motion of the car in and
coordinates, from the variables of motion from the road,

and .  The expanded form follows in equation (7).̈ + ( + ) ̇ + ( + ) + (− + ) ̇+ (− + )= ̇ + ̇ + + (7)
The same series of steps are performed on equations (4)-
(6) for and .

̇ = ̇ = ̈
= 0
= (− )( − − ) + (− )( + − )= − ̇ = −( ̇ − ̇ − ̇ (− )+ ̇ + ̇ − ̇ (− ))

these equations are placed in the Lagrange form.̈ + ((− )( − − )) + (− )( + − )= −( ̇ − ̇ − ̇ (− )+ ̇ + ̇ − ̇ (− ))
These equations are expanded to be in the same form as
equation (7).̈ + ( + ) ̇ + ( + ) + (− + ) ̇+ (− + )= ̇ (− ) + (− ) + ̇ ( )+ ( (8)
The equation of motion is then set up in matrix form by
combining equations (7) and (8) to make equation (9).00 ̈̈ + + − +− + 975 + 0 ̇̇+ + − 1 + 2− + += − ̇̇+ − (9)= ∗ 2 (10)
The parameters of the system are as follows:

= =25000N/m, c1 = c2 = 2000 Ns/m, M =805.2kg, J
= 805.2kgm2, = 1, = 1m, and = 1.5m.  Substituting
these values and expanding Eqs. (3.9) & (3.10) yields Eqs.
(11) & (12)̈ + 4.97 ̇ + 62 + 1.24θ̇ + 15.5θ= 2.48 ̇ + 31 + 2.48 ̇+ 31 (11)θ̈ + 8.07θ̇ + 101θ + 1.24 ̇ + 15.5= −2.48 ̇ − 31 + 3.73 ̇+ 46.57 (12)
The car is assumed to be travel over road at different
speeds, the road is assumed to be sinusoidal in nature with
amplitude of X (in meters) and having a wavelength (d) of
5meters.  With this information, the input functions y1and
y2 are defined in Equation. (13) & (14)
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= ( ) (13)= ( + ф) (14)
Where, ф is the phase difference between front and rear
wheel.ф = 2 ( + )/ф= 2π (1 + 1.5)/5 = π
Where, t is the time traveled and πis the time shift that
accounts for the time that it takes for the rear suspension to
negotiate the "bump" that the front suspension had
negotiated.

3.1 Calculation for the Natural Frequencies̈ + 62 + 15.5Ө = 0 (15)̈ + 101 + 15.5 = 0 (16)= ( + ф) (17)= Ө ( + ф) (18)
On putting the value of equation (17) & (18) in equation
(15) & (16) yield equation (19).

ω4 – 163ω2 + 6021.75 = 0 (19)
On solving equation (19) the value of natural frequencies
are as follow:
ω1 = 7.5
ω2 = 10.3

Corresponding to these natural frequencies, the value of
amplitude ratios are as follow.

Ө = −2.86Ө = 0.3
4. Results and Discussion

To obtain the dynamic response of the system MATLAB
program has been written for equations (11) and (12), for
different velocities 11.5km/hr, 17.2km/hr, 22.9km/hr and
28.65km/hr respectively.
First of all, the half car model encountering to sinusoidal
bump analysis has been done to see the response. When the
amplitude of sinusoidal bump is increased the amplitudes
of vibration are also increased. The amplitudes of vibration
magnifies than the input sinusoidal excitation from road to
the wheel. On increasing the velocity of the vehicle the
amplitudes of vibration are increased up to the certain
velocity and for a particular velocity of the vehicle the
amplitudes of vibration reaches to a maximum value. If the
velocity of the vehicle is further increased then the
vibration amplitudes are continuously decreased.

(a)

(b)

Figure 1: Motion response of the vehicle at v=11.5km/h, (a)
bounce motion, (b) Pitch Motion
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(b)
Figure 2: Motion response of the vehicle at v=17.5km/h, (a)

bounce motion, (b) Pitch Motion

Figure 3: Motion response of the vehicle at v=22.9 km/h,
(a) Bounce motion, (b) Pitch Motion

(a)

(b)

Figure 4: Motion response of the vehicle at v=28.65 km/h,
(a) Bounce motion, (b) Pitch Motion

5. Conclusion

In this paper, a stochastic half-car model is used to
investigate the dynamic response of half cars with
uncertainty. The effect of uncertainty in the vehicle’s
parameters on the randomness of the natural frequencies
and vehicle’s random responses are presented by using the
MATLAB CODES. The dynamic characteristics and
random response of stochastic vehicles are obtained
expediently. This method will also be applied to the
dynamic analysis of random vehicles by using stochastic
full-car models
The amplitudes of vibration of a vehicle can be controlled
for a particular speed with particular values of damping and
stiffness coefficients. If the values of damping and stiffness
coefficients increase to high extent then spring and damper
act as rigid body and all input vibration to the tire
transmitted to the upper parts of the vehicle as such. The
effect of spring coefficients is not so much on vibration
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control to the different parts but variation in damping
coefficient is having much effect on vibration amplitudes.
From the results it has seen that the transmission of
vibration to the upper part is of maximum amplitudes. The
amplitude of vibration is minimum to the tire. It has been
observed from the results that the bump amplitude to the
road should be of optimum value.
Random vibration analysis can be further done of a road
vehicle is investigated using different car models which are
quarter car model, bicycle car model, and half car model.
Computer programs in Mathematical are developed for all
car models. To understand the base excitation response
behaviors of the sprung mass in all car models, firstly
deterministic vibration analysis are carried out and the
results are presented by graphs. This graphs show the
vibration amplitudes vs time under the excitation
frequencies which are near to and far from the natural
frequencies. To simplify the calculations, proportional
damping is considered for damping properties in car
models.
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