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1. Introduction 

 

In recent years, the concept of micro-sized micro air vehicles 

(MAVs) with the primary surveillance function has increased. 

MAVs are typically small planes with a maximum span of 150 

mm and a top speed of 10 m/sec [1-3]. The flight regime has 

an extraordinarily low Re-number due to the small span scale 

and fast flight speed. The Defense Advanced Research Project 

Agency (DARPA) (MAVs) first developed Micro Air 

Vehicles. These aren't miniature copies of bigger planes. They 

are in a class by themselves in terms of price, functionality, and 

military capability. Flapping foils are being researched for use 

in MAVs and autonomous underwater vehicles as a source of 

lift (AUVs). Perceiving insects, birds, and insects can teach us 

about the fluid dynamics of these biologically excited flows. 

Their utility is limited by the absence of experimental studies 

of flapping foil in nature capable of obtaining full-field 

regionally determined pressure and velocity measurements [4]. 

The requirement to work with live creatures dictates the 

specific settings, as it is challenging to forecast the actions of 

these insects/birds during testing conditions. 

Furthermore, in a structure like an insect's/flapping bird's 

wings, there is no mechanism for extracting shear stress and 

surface pressure distribution [5]. Pantala flavescens can fly for 

10-15 seconds at around 15 m/s. Dragonflies of the Aeshna 

genus can glide for up to 30 seconds without losing altitude 

[6]. A smaller dragonfly was filmed with a glide time of 0.5 

seconds, a span of 1 m, and a gliding speed of 2.5 meters per 

second. The typical Reynolds number (Re) range in gliding 

flight is 102 and 104 [7-10]. As a result, this fluid flow is called 

an ultra-low Reynolds number regime. The dragonfly is no 

exception for producing lift; its forewings should flap. The 

usual flapping frequency of an airfoil in forwarding flight is 

between 24 and 30 Hz [11, 12]. Aeshna Cyanea, on the other 

hand, could be classified as gliders because they frequently 

cover four-chord spans in a single wing beat [13]. Furthermore, 
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as the ambient temperature rises, the frequency of wing beats 

lowers. At the same time, the duration of gliding increases 

[14], and it was proposed that the airfoil adopt this gliding style 

to profit from cooling convection in the hot climate.  

The thoracic flight muscles responsible for heat production 

may relax in the dragonfly, allowing it to glide with little effort 

[15-17].  

We investigate the fluid flow and aerodynamic performance of 

a sliced part of a dragonfly airfoil with varied angles of attack 

(AOA) ranging from 0° to 10° in this paper.  

According to the author's best knowledge, the aerodynamic 

performance at such a low Re number has yet to be 

investigated. These parameter ranges apply to both dragonflies 

and MAVs. The intermediate cross-section of a dragonfly wing 

is represented by the pleated airfoil used in the simulation. In 

Fig. 1, profile 2 [3] was chosen for numerical simulation. 

 

 
Figure 1: Pleated cross-section of dragonfly wing section [3] 

 

2. Governing equations 

 

The incompressible Navier-Stock equations were discretized 

using a finite volume technique, and the solution uses a time-

dependent, standard form. The incompressible Navier-Stock 

equations are written in a tensor form as: 
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The Navier stokes equations were derived with the help of cell 

centred, non-staggered layout, and eq. 2 may be written as  
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Where i is 1, 2 and 3 in the x, y, and z direction, while velocity 

component represented as u1, u2, and u3 corresponding to u, v, 

and w respectively. µ and   are dynamic viscosity and density 

of the fluid. The above equations are non dimensionalized 

using the relevant velocity and length scales. Re, c, u0 are 

Reynolds number, chord length of airfoil, and streamline 

velocity. A pressure-based solution was used to investigate 

equation 3. This strategy employs a prediction method 

algorithm [18]. In the projection approach, the mass 

conservation requirement of the velocity field was addressed 

by solving a pressure equation. The pressure equation was 

generated using the continuity and momentum equations and 

adjusted velocity fields. The governing equation was 

nonlinear, and the solution strategy included iterations in 

which the entire set of governing equations was solved 

simultaneously until the solution converged. The pressure 

solver solves the governing equation with a solution approach. 

 

2.1 General Scalar Transport Equation Discretization and 

Solution 

 

This method uses control volume to convert a scalar equation 

into a numerically solvable equation that may be used to solve 

conservation equations for carrying a scalar quantity (∅). The 

integration of the transport equation through each boundary 

condition leads to a discrete equation that describes the 

conversion rule on a control volume basis, as illustrated below. 
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Where, Sϕ, ∇ϕ, Γϕ, A⃗⃗⃗, v ⃗⃗ ⃗, and 𝜌 are source of ϕ per unit volume, 

∅ gradient, diffusion coefficient of ∅, surface vector, velocity 

vector, and density respectively. The discretization of equation 

5 on a given cell may be written as 
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The 2nd order upwind approach is used to discretize the 

momentum equation. When the 2nd order upwind was applied, 

numbers at cell faces were detected using a multivariate linear 

equation [19]. This method used the Taylor series extension to 

obtain higher-order precision at cell faces. The face value was 

determined as follows when the 2nd order up-wind was used: 

 

𝜙𝑓,𝑆𝑂𝑈 = 𝛻𝜙. 𝑟 + 𝜙    (7) 

 

Where 𝑟 is the displacement vector, and ∇𝜙 is gradient. In this 

work, Green-Gauss Node based method, ∇∅ may be calculated 

as follow: 
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Where Nf = Number of nodes 

 

The node value was calculated using the cell values around the 

nodes [20, 21]. The cell-based gradient method is quite similar 

to the node-based gradient method for unstructured or irregular 

models. The following is how the continuity and momentum 

equations can be discretized. 

 

∮ 𝜌�⃗�. 𝑑𝐴 = 0       (9) 
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∮ 𝜌�⃗��⃗�. 𝑑𝐴 = − ∮ 𝑝𝐼. 𝑑𝐴 +  ∮ 𝜏̿ . 𝑑𝐴 + ∭ �⃗�𝑑𝑉  (10) 

 

𝑎𝑝𝑢 =  ∑ 𝑎𝑛𝑏𝑢𝑛𝑏 + ∑ 𝑝𝑓𝐴𝑛𝑏 . 𝑖 + 𝑆       (11) 
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(𝑝𝑐1 + (𝛻𝑝)𝑐1. 𝑟1)) = 𝐽𝑓 + 𝑑𝑓(𝑝𝑐0 + 𝑝𝑐1) (13) 

 

Where �⃗� is the force vector,  I is the identity matrix, 𝜏̿ is the 

stress tensor.𝐽𝑓 is the mass flux, 𝑣𝑛,𝑐0, 𝑣𝑛,𝑐1 are normal 

velocities, and 𝑝𝑐0, 𝑝𝑐1 are the pressures.  

 

2.2 Pressure Velocity Coupling 

 

2.2.1 SIMPLE Algorithm 

 
The SIMPLE technique was employed to force mass 

conservation and generate the pressure field p*, which exploits 

a correlation between pressure and velocity modification. A 

predicted pressure p was used to solve the momentum 

equation, and the resulting face flow j f* was estimated using 

the discretized continuity eq. 13. 
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∗ + 𝑑𝑓 (𝑝𝑐𝑜
∗ + 𝑝𝑐1
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Subsequently, a modification 𝑗𝑓
′  was added to the face flux 𝑗𝑓

∗  

 

𝑗𝑓 =  𝑗𝑓
∗ + 𝑗𝑓

′                    (14) 

 

The SIMPLE algorithm requires 𝑗𝑓
′  may be calculated as  

 

𝑗𝑓
′ =   𝑑𝑓 (𝑝𝑐𝑜

′ + 𝑝𝑐1
′ )    (15) 

 

Where 𝑝′ = pressure cell correction 

 

To get discrete eq. for the pressure modification 𝑝′, the 

SIMPLE algorithm insert the flux modification eqs.14, 15 in to 

the discrete continuity eq. 9.  

 

𝑎𝑝𝑝′ = ∑ 𝑎𝑛𝑏𝑛𝑏 𝑝𝑛𝑏
′ + 𝑏    (16) 

 

where   𝑏 = ∑ 𝐽𝑓
∗𝑁𝑓𝑎𝑐𝑒𝑠

𝑓
𝐴𝑓                    

To solve the pressure correction, an algebraic multigrid 

technique might be used. The face flux and cell pressure are 

corrected after getting a solution. 

 

𝑝 = 𝑝∗ + 𝛼𝑝𝑝′        (17) 

 

𝐽𝑓 = 𝐽𝑓
∗ + 𝑑(𝑝𝑐𝑜

′ − 𝑝𝑐1
′ ) 

During each iteration, the pressure relaxation factor (𝛼𝑝) and 

the corrected face flow were used to solve the discrete 

continuity equation. 

 

2.3 Lift and drag forces 

 

The reaction force of a liquid operating on the wing is 

generated by a flexible flow pattern around the wing portion. 

When a lift is generated, the air beneath the wing is usually 

more significant than atmospheric pressure, while the air 

beneath is generally lower. This pressure differential permits 

air to flow from the upper wing's root. The following is an 

analysis of the lift and drag force. 

 

FL=
1

2
 CLρAu2     (18) 

 

FD=
1

2
 CDρAu2     (19) 

 

Where CL and CD are the lift and drag coefficient, A, ρ, u are 

cross-sectional area, density, and velocity respectively. 

 

3. Boundary conditions 

 

This study applied four boundaries to the 2D domain at the 

bottom, top, right, and left, as shown in fig. 2. The entrance 

flow was set to a constant velocity (0.14607) [7], and the 

output flow was set to the right side, with no gradient. To 

reduce the influence of the boundary condition, the top and 

bottom boundaries should be placed far enough away from the 

airfoil. 

 

 
Figure 2: Boundary conditions 

 

4. Results and Discussion 

 

4.1 Effect of Reynolds number and angle of attack 

 

The effect of AOA and Re numbers on airfoil performance is 

essential to examine. Because it had ramifications for how 

these wings may function for MAVs of varied sizes, this phrase 

is also necessary for the use of such wings in MAVs. As a 

result, a numerical analysis of the effects of the AOA and Re 

numbers on the aerodynamic performance of airfoils was 

conducted. Table 1 shows that when the AOA increases from 

0 to 10° degrees, the mean lift coefficient increases while the 



  

Sarvesh Kumar et al. / International journal of research in engineering and innovation (IJREI), vol 6, issue 5 (2022), 321-326 

 

  

 

 

 

324 

coefficient of drag drops, resulting in improved propulsive 

performance. We attempt to maintain a consistent lift with the 

best lift to drag ratio in any aircraft vehicle. The gliding ratio 

increased monotonically as the AOA increased at all Reynolds 

numbers. The drag formation has some exciting outcomes. 

Because the viscous effect is more common at low Re 

numbers, leading skin friction to be the significant contribution 

to drag reduction, the average drag coefficient in each example 

drops as the AOA increases, as expected. The shear drag 

distribution of the pleated airfoil was significantly more 

complicated due to the complexity of the airfoil design. There 

are notably significant shear drag maxima on both the pressure 

and suction surfaces around the top of the corrugation. 

However, the formation of a large zone of negative shear drag 

in the superseding gaps is intriguing. 

  
Table 1: Values of CL and CD at different Reynolds Number (Re) and at different AOA 

Reynolds Number Angle of attack CL CD CL/CD Steady/Unsteady 

1000 

0 0.1710 0.352 0.484 Steady 

5 0.794 0.2803 2.83 Steady 

10 0.946 0.256 3.68 Steady 

1250 

0 0.185 0.240 0.771 Steady 

5 0.724 0.173 4.18 Unsteady 

10 0.810 0.162 4.99 Unsteady 

1500 

0 0.215 0.148 1.45 Steady 

5 0.940 0.094 9.96 Unsteady 

10 1.0453 0.0771 13.55 Unsteady 

As a result, the pleated airfoil's low shear drag is due to that 

negative shear region, which cancels out the influence of the 

positive shear drag in the different areas of the airfoil. 

Examining the mean flow over the airfoil exposes the cause of 

the negative and positive shear drag peaks. The drag 

coefficient reduces as the Re Number grows, but the lift 

coefficient increases first and subsequently drops, as shown in 

table 1. 

 

 
Figure 3: Streamlines at different time units illustrating of the 

pleated airfoil at Re=1500 and α = 0° 

 

 
Figure 4: Streamlines at different time units illustrating of the 

pleated airfoil at Re=1500 and α = 5° 

 

The source of the negative and positive shear drag peaks is 

revealed by analyzing the average flow across Aeshna 

Cyanea's airfoil. The streamline on the pleated airfoil at 

Reynold Number 1250 displays a trapped vortex in each 

chamber, as illustrated in fig. 3-5. Different writers [22-24] 

made the same observation, expecting fluid flow to behave due 

to the trapped vortex in each hole [25]. Furthermore, the flow 

separation downstream of each corrugation's tip is 

reconstituted just upstream of the next corrugation's tip. The 

flow area between reattachment and detachment has formed 

recirculating flow with negative shear drag. Additionally, the 
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negative and positive shear drag maxima arise at the flow 

recirculation zone, as illustrated in fig. 6, because these 

locations have a significant surface average gradient in the 

tangential velocity. 

 

 
Figure 5: Streamlines at different time units illustrating of the 

pleated airfoil at Re=1500 and α = 10° 

 

 
Figure 6: Pressure distribution of pleated airfoil (a) Re-1000, (b) 

Re- 1250, (c) Re- 1500 

 

This is similar to the findings [7, 26], which show that pleats increase 

negative pressure on the upper surface of the airfoil, resulting in 

increased lift output. Fig. 6 shows pressure contours as a function of 

AOA and Re numbers. However, the pressure connection on the lower 

surface of the existing profile was not included in this analysis [27]. 

We determined that the upper side pressure of the airfoil is always 

negative, but the lower side pressure is always positive. The trapped 

vortices reduce stress on the corrugated top airfoil's surface, leading 

to enhanced lift generation. 

 

5. Conclusions 

 

The numerical simulation of a dragonfly wing airfoil was 

successfully investigated and observed that as the AOA grows 

from 0 to 10°, the mean coefficient of lift increases while the 

coefficient of drag drops, resulting in improved propulsive 

performance as AOA increases. In each scenario, the average 

drag coefficient decreases as the AOA increases because 

viscous effects are more prevalent at low Re numbers, causing 

skin friction to be the primary contributor to total drag 

reduction. The negative and positive shear drag maxima arise 

in the flow recirculation zone because this is where the 

tangential velocity has a significant average surface gradient. 

The pleats produce negative pressure on the upper surface of 

the airfoil, enhancing lift creation. At the same time, the 

trapped vortices decrease pressure on the corrugated top 

surface of the airfoil, thus increasing lift generation. 
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