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1. Introduction 
 

The Pervaporation (PV) process has the ability to separate 

different compounds from each other in different liquid 

mixtures. The separation process in these mixtures can involve 

the separation of water from a water-organic mixture or the 

separation of an organic compound from water. This 

separation can also be done in an organic-organic mixture. This 

separation takes place after the feed hits a membrane. Across 

the membrane, the chemical potential gradient works as the 

driving force for the mass transport of the materials. Also, the 

use of an ineffective purifier or vacuum pump (typically steam 

or air) that should be seeped in the side will help maintain 

proper penetration vapor pressure. 

Usually the downstream pressure of the membrane should be 

less than the feed vapor pressure. After the separation process, 

the permeated product (permeate) can be taken downstream of 

the membrane (Fig. 1). This mechanism is not dependent on 

the relative volatility of components [1- 5].  

An efficient membrane requires a suitable membrane material 

that can enhance performance efficiency in PV performance.  

Since the minor feed components consume the latent heat, 
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therefore PV techniques reduce energy during the process. 

The second feature in general is that the best technology for 

separating liquids is provided by the pervaporation process. In 

addition, the pervaporation process also provides unparalleled 

benefits in separating heat-sensitive, azeotropic, and near-

boiling compounds [6-8].   

 

 
Figure 1: Simplified diagram of pervaporation process 

 

This feature is due to the fact that this process has mild 

operating conditions, no pollution to the environment and the 

absence of different species in the feed. Most membrane 

materials and compounds used in PV processes can be used on 

a laboratory scale, but if they need to be used on an industrial 

scale, they must be modified according to application. Thus, 

there is a need to survey more membrane materials possibilities 

which is important in order to overcome drawbacks in current 

membranes. 

Most of the membrane materials used in PV techniques is 

usable in laboratory scale, but not in industrial applications. 

Thus, there is a need to survey more membrane materials 

possibilities which is important in order to overcome 

drawbacks in current membranes. 

Dehydration due to the pervaporation of organic acids and 

bases is important because most of these compounds form 

azeotropes or create an exertion on the vapor-liquid 

equilibrium curve. Acetic acid is one of the 20 main organic 

intermediates used in the chemical industry and in the 

preparation of several important intermediates such as vinyl 

acetate, acetic acid itself, phthalic anhydride, acetic anhydride, 

etc., it is mixed with water. Also, the separation of acetic acid 

and water using the normal binary distillation process is 

particularly difficult due to the relative oscillation, especially 

for acetic acid concentration values. As an alternative 

candidate, pervaporation dehydration is energy saving and 

economically more viable [9-16]. 

There is a need for membrane materials that offer good 

selectivity and high flux for a wide range of industrially 

important separations. In general, mechanical separation 

processes for separating gaseous or liquid streams use 

membrane technology [20-28]. One of the best technologies 

for the separation and purification of acetic acid -water is the 

pervaporation process.  Various diagrams in which the amount 

of leaked products is presented in the experimental data with 

the data obtained from the ANN simulation for the separation 

of acetic acid -water feed using by Polyimide membrane, 

Nation membrane and poly (acrylonitrile-co-acrylic acid) 

[PAC] membranes by the Pervaporation process. 

 

2. Theory 

 

2.1 Artificial Neural Network (ANN) 

 

The artificial neural networks used are a kind of computational 

model that is inspired by the human brain. Many advances in 

artificial intelligence in recent years have been made using 

artificial neural networks, including voice recognition, image 

recognition, and robotics. It should be noted that artificial 

neural networks can be explained as biologically inspired 

simulations performed to perform specific tasks such as 

clustering, classification, and pattern recognition. It can be said 

that artificial neural networks are a biologically inspired 

network of artificial neurons that have been specially adjusted 

to be able to use it to do certain things. 

It should be noted that the term "nervous" originates from the 

basic unit of human (animal) neuronal function, the "neuron", 

or that nerve cells in the brain and other parts of the human 

(animal) body. 

A neural network is a group of algorithms that confirm a 

fundamental relationship in a similar set of data to the human 

brain. The neural network can help change the input so that the 

network can get the best results without redesigning the output 

method. Here, in Fig. 2, we can see the biological cell as well 

as the structure of a neuron.   

 

 
Figure 2. Major parts of a biological cell 

 

We have to consider that an artificial nerve cell is like a 

mathematical equation in which the symbol p can be defined 

here as a signal from the input. After amplifying or attenuating 

as much as the parameter w (mathematically called the weight 
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parameter), an electrical signal with a value of pw will enters 

the neuron. For a simpler mathematical equation, it is assumed 

that the input signal here is added to another signal with a value 

of b in the nucluous. Before leaving the cell, the final signal 

with a value of pw + b undergoes another process that is 

technically called "Transfer function". 

This action is shown as a box in Fig. 3 with f written on it. Here 

the input of this box is the Pw + b signal and the output is 

represented by a mathematical method. Mathematically, we 

will have a = f (pw + b) 

 

 

 

 W     n        a 
 

 

 

       b 

   p     1         
Figure 3. Mathematical model of a neuron 

 

Placing a large number of the above cells creates a large neural 

network. So it can be said that collecting a large number of the 

above cells creates a large neural network. It can be concluded 

that the network developer must assign large values to the 

parameters w and b. Therefore, this process that was 

introduced is called the learning process. 

In addition, populations of neurons at different layers can be 

used to increase system efficiency. 

It can be said that in the structure of these neural networks, in 

some cases it is necessary to place a number of neural cells in 

one layer.  In addition, populations of neurons at different 

layers can be used to increase system efficiency. Therefore, in 

these conditions, it can be said that the network will be 

designed with a certain number of inputs and outputs. 

However, the difference is that there is more than one layer 

(instead of just one layer). 

Therefore, it should be said that (multilayer network), here the 

input layer is the layer through which the inputs are given to 

the system, it should also be said that the output layer is the 

layer in which the desired results are presented and also the 

other layer Are called hidden layers. Fig. 4 shows a three-layer 

neural network. Includes input layer, output layer and hidden 

layer (which in this form is only one layer). We can increase 

network capabilities by changing the number of hidden layers 

and the number of nerve cells in each layer. 

 

2.2 Modeling of pervaporation process by use of Neural 

Network 

 

Here and in this research, it should be noted that the effect of 

ANN input parameters (operating conditions) on the separation 

efficiency of acetic acid and water.   

Here an ANN is designed for conversion parameter analysis. 

And Feed-forward multilayer here an ANN is designed for 

conversion parameter analysis. And Feed-forward multilayer 

perceptron ANN with Levenberg-Marquardt function include 

of two inputs and two outputs were used.  

 

 
Figure 4. A schematic view of neural network and its constituent  

layers 

 

In this modeling, the Tansig transfer function was used for the 

hidden layer and Purelin was used for the output layer Also, 

five neurons were identified here for the hidden layer after the 

data processing was done, here 70% of the data was allocated 

for learning and the remaining 30% for testing. In this research; 

Matlab version R2014b was used.  

 

 
Figure 5. A schematic view of the ANN 

 

Fig. 5 shows a schematic view of a two-layer ANN that, as can 

be seen, has only one hidden layer and output.  Inputs are 

multiplied by a value of w, and there is a bias factor (b) that is 

added to the input (bias is a constant value that is added to the 

input to increase accuracy). 

This enclosure randomly defines Train, Validation, and Test 

data, so that there are instances from anywhere in the 

environment. The Levenberg-Marquardt function was used in 

the training phase. Mean square error (MSE) functions are used 

to measure performance. It is also noted that the default 

settings for the derivative issue were used here. 

It should also be noted that here Epoch is accepted in the range 

of 0 to 1000 repetitions. This means that continuous weights 

are changed 1000 times based on Levenberg-Marquardt 

performance and the training method is performed.  

+ f 
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If the number of repetitions reaches 1000, the method stops. 

There was no time limit (but it could be set for practice to stop 

after, say, 30 seconds).  

Valid check is the maximum number of times it can withstand 

network failure. 

 

3. Pervaporation experiment 

 

Water- acetic acid separation tests were carried out using 

evaporative seepage process. These experiments were 

performed with Nation membrane, Polyimide membrane and 

poly (acrylonitrile-co-acrylic acid) [PAC] membranes using a 

laboratory pervaporation system. It should also be noted that 

different operating conditions such as feed concentration were 

evaluated in these experiments [29]. The poly (acrylonitrile-

co-acrylic acid) [PAC] membranes were three sample PAC-1 

(Membrane density was equal 211 (kg/m 3)), PAC-2 

(Membrane density was equal 415 (kg/m 3)) and PAC-3 

(Membrane density was equal 658.35 (kg/m 3)). 

Experimental results as well as predictions of neural network 

modeling are discussed below. 

 

4. Comparison of neural network modeling results and 

experimental data 

 

4.1 Effect of feed concentration on flux and selectivity 

(Polyimide membrane) 

 

Fig. 6, 7 shows the change in water flux and selection with the 

oral water concentrations for the polyamide membrane at 30º 

C. Obviously, as the water content in the feed increases, the 

flux increases and the selectivity decreases.  

It can be said that as it is clear from the diagrams, here the 

neural network model has been able to predict the laboratory 

results well and accurately

.  

 

Figure 6: Variation of flux of water with feed concentration of water in polyimide membrane at 30°C (Experimental Data and Network Model 

Data) 

 

 
Figure 7: Variation of selectivity of water with feed concentration of water in polyimide membrane at 30°C Polyimide (Experimental Data and 

Network Model Data) 
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4.2 Effect of feed concentration on flux and selectivity 

(Nation membrane) 

 

Figs. 8 and 9 show the variation of water flux and selectivity 

with feed concentrations of water for Nation membrane at 

30°C. It is evident that flux increases and selectivity decreases 

with increasing water content in the feed. This may be due to 

plasticization of the membrane by water at low acetic acid 

content in the feed. As can be seen from the graphs, the neural 

network model has been able to predict the experimental 

results well and accurately. 

 

 
Figure 8: Variation of flux of water with feed concentration of water in Nation membrane at 30°C (Experimental Data and Network Model Data) 

 

 
Figure 9: Variation of selectivity of water with feed concentration of water in Nation membrane at 30°C Polyimide (Experimental Data and 

Network Model Data) 

 

4.3 Effect of feed concentration on flux and selectivity 

(Acrylonitrile copolymer membranes) 

 

Figs. 10-13 show results of pervaporation through the PAC 

copolymer membranes. As can be seen, with increasing water 

concentration in the feed, the water flux increases, while the 

selectivity decreases. This may again be attributed to 

plasticization of these membranes at high water content in the 

feed. From Figs. 10-13, it can be observed that quite 

predictably in PAC membrane, with increase in density from 

PAC-1 to PAC-3, water flux increases and selectivity drops. 

The water fluxes from the above membranes show the 

following trend:  

 

Nation > PAC > Polyimide 

Therefore, as can be seen in Figures 10-13, it can be said that 

with increasing water concentration in the feed, the amount of 

water flux in the product initially increases and also the amount 

of selectivity decreases. These results are similar for different 

membranes. Also, as can be seen from the figure, the neural 

network model was able to predict the experimental results 

well. The three-dimensional figures of the neural network data 

show the effect of water concentration in the feed on the 

leached water flux in the product and selectivity were shown 

in Fig. 11-13. 

 

 

 



  

Kazemimoghadam. M / International journal of research in engineering and innovation (IJREI), vol 5, issue 5 (2021), 300-307 

 

  

 

 

305  

 
Figure 10: Effect of water in feed concentration on water Flux (Experimental Data and Network Model Data) 

 

 
Figure 11: Network Model Prediction for Effect of water concentration in feed on water Flux 

 

 
Figure 12: Effect of water in feed concentration on Selectivity (Experimental Data and Network Model Data) 
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Figure 13: Network Model Prediction for Effect of water concentration in feed on Selectivity 

 

5. Conclusions 

 

In this study, it can be concluded that the results of the neural 

network model can be used to predict the performance of 

polymer membranes in the seepage process for the separation 

of acetic acid water solutions. 

It should also be noted that changes in process conditions as 

well as experimental results are well predictable by the neural 

network model. On the other hand, the results obtained from 

neural network modeling showed that this model has the 

lowest error rate in predicting experimental results. 
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